Secure multidimensional range queries over outsourced data

Secure multidimensional range queries over outsourced data In this paper, we study the problem of supporting multidimensional range queries on encrypted data. The problem is motivated by secure data outsourcing applications where a client may store his/her data on a remote server in encrypted form and want to execute queries using server’s computational capabilities. The solution approach is to compute a secure indexing tag of the data by applying bucketization (a generic form of data partitioning) which prevents the server from learning exact values but still allows it to check if a record satisfies the query predicate. Queries are evaluated in an approximate manner where the returned set of records may contain some false positives. These records then need to be weeded out by the client which comprises the computational overhead of our scheme. We develop a bucketization procedure for answering multidimensional range queries on multidimensional data. For a given bucketization scheme, we derive cost and disclosure-risk metrics that estimate client’s computational overhead and disclosure risk respectively. Given a multidimensional dataset, its bucketization is posed as an optimization problem where the goal is to minimize the risk of disclosure while keeping query cost (client’s computational overhead) below a certain user-specified threshold value. We provide a tunable data bucketization algorithm that allows the data owner to control the trade-off between disclosure risk and cost. We also study the trade-off characteristics through an extensive set of experiments on real and synthetic data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Secure multidimensional range queries over outsourced data

Loading next page...
 
/lp/springer_journal/secure-multidimensional-range-queries-over-outsourced-data-l0d0LfGP0Y
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-011-0245-7
Publisher site
See Article on Publisher Site

Abstract

In this paper, we study the problem of supporting multidimensional range queries on encrypted data. The problem is motivated by secure data outsourcing applications where a client may store his/her data on a remote server in encrypted form and want to execute queries using server’s computational capabilities. The solution approach is to compute a secure indexing tag of the data by applying bucketization (a generic form of data partitioning) which prevents the server from learning exact values but still allows it to check if a record satisfies the query predicate. Queries are evaluated in an approximate manner where the returned set of records may contain some false positives. These records then need to be weeded out by the client which comprises the computational overhead of our scheme. We develop a bucketization procedure for answering multidimensional range queries on multidimensional data. For a given bucketization scheme, we derive cost and disclosure-risk metrics that estimate client’s computational overhead and disclosure risk respectively. Given a multidimensional dataset, its bucketization is posed as an optimization problem where the goal is to minimize the risk of disclosure while keeping query cost (client’s computational overhead) below a certain user-specified threshold value. We provide a tunable data bucketization algorithm that allows the data owner to control the trade-off between disclosure risk and cost. We also study the trade-off characteristics through an extensive set of experiments on real and synthetic data.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off