Secretome profile analysis of multidrug-resistant, monodrug-resistant and drug-susceptible Mycobacterium tuberculosis

Secretome profile analysis of multidrug-resistant, monodrug-resistant and drug-susceptible... The emergence of drug-resistant tuberculosis has generated great concern in the control of tuberculosis and HIV/TB patients have established severe complications that are difficult to treat. Although, the gold standard of drug-susceptibility testing is highly accurate and efficient, it is time-consuming. Diagnostic biomarkers are, therefore, necessary in discriminating between infection from drug-resistant and drug-susceptible strains. One strategy that aids to effectively control tuberculosis is understanding the function of secreting proteins that mycobacteria use to manipulate the host cellular defenses. In this study, culture filtrate proteins from Mycobacterium tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains were gathered and profiled by shotgun-proteomics technique. Mass spectrometric analysis of the secreted proteome identified several proteins, of which 837, 892, 838 and 850 were found in M. tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains, respectively. These proteins have been implicated in various cellular processes, including biological adhesion, biological regulation, developmental process, immune system process localization, cellular process, cellular component organization or biogenesis, metabolic process, and response to stimulus. Analysis based on STITCH database predicted the interaction of DNA topoisomerase I, 3-oxoacyl-(acyl-carrier protein) reductase, ESAT-6-like protein, putative prophage phiRv2 integrase, and 3-phosphoshikimate 1-carboxyvinyltransferase with isoniazid, rifampicin, pyrazinamide, ethambutol and streptomycin, suggesting putative roles in controlling the anti-tuberculosis ability. However, several proteins with no interaction with all first-line anti-tuberculosis drugs might be used as markers for mycobacterial identification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Microbiology Springer Journals

Loading next page...
 
/lp/springer_journal/secretome-profile-analysis-of-multidrug-resistant-monodrug-resistant-Yif0VGRwqS
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Microbiology; Microbial Ecology; Biochemistry, general; Cell Biology; Biotechnology; Ecology
ISSN
0302-8933
eISSN
1432-072X
D.O.I.
10.1007/s00203-017-1448-0
Publisher site
See Article on Publisher Site

Abstract

The emergence of drug-resistant tuberculosis has generated great concern in the control of tuberculosis and HIV/TB patients have established severe complications that are difficult to treat. Although, the gold standard of drug-susceptibility testing is highly accurate and efficient, it is time-consuming. Diagnostic biomarkers are, therefore, necessary in discriminating between infection from drug-resistant and drug-susceptible strains. One strategy that aids to effectively control tuberculosis is understanding the function of secreting proteins that mycobacteria use to manipulate the host cellular defenses. In this study, culture filtrate proteins from Mycobacterium tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains were gathered and profiled by shotgun-proteomics technique. Mass spectrometric analysis of the secreted proteome identified several proteins, of which 837, 892, 838 and 850 were found in M. tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains, respectively. These proteins have been implicated in various cellular processes, including biological adhesion, biological regulation, developmental process, immune system process localization, cellular process, cellular component organization or biogenesis, metabolic process, and response to stimulus. Analysis based on STITCH database predicted the interaction of DNA topoisomerase I, 3-oxoacyl-(acyl-carrier protein) reductase, ESAT-6-like protein, putative prophage phiRv2 integrase, and 3-phosphoshikimate 1-carboxyvinyltransferase with isoniazid, rifampicin, pyrazinamide, ethambutol and streptomycin, suggesting putative roles in controlling the anti-tuberculosis ability. However, several proteins with no interaction with all first-line anti-tuberculosis drugs might be used as markers for mycobacterial identification.

Journal

Archives of MicrobiologySpringer Journals

Published: Nov 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off