Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT

Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT To increase the coverage of secreted protein prediction, we describe a combination strategy. Instead of using a single method, we combine Hidden Markov Model (HMM)-based methods CJ-SPHMM and TMHMM with PSORT in secreted protein prediction. CJ-SPHMM is an HMM-based signal peptide prediction method, while TMHMM is an HMM-based transmembrane (TM) protein prediction algorithm. With CJ-SPHMM and TMHMM, proteins with predicted signal peptide and without predicted TM regions are taken as putative secreted proteins. This HMM-based approach predicts secreted protein with Ac (Accuracy) at 0.82 and Cc (Correlation coefficient) at 0.75, which are similar to PSORT with Ac at 0.82 and Cc at 0.76. When we further complement the HMM-based method, i.e., CJ-SPHMM + TMHMM with PSORT in secreted protein prediction, the Ac value is increased to 0.86 and the Cc value is increased to 0.81. Taking this combination strategy to search putative secreted proteins from the International Protein Index (IPI) maintained at the European Bioinformatics Institute (EBI), we constructed a putative human secretome with 5235 proteins. The prediction system described here can also be applied to predicting secreted proteins from other vertebrate proteomes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT

Loading next page...
 
/lp/springer_journal/secreted-protein-prediction-system-combining-cj-sphmm-tmhmm-and-psort-cky9RqCVvs
Publisher
Springer Journals
Copyright
Copyright © 2003 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-003-2296-6
Publisher site
See Article on Publisher Site

Abstract

To increase the coverage of secreted protein prediction, we describe a combination strategy. Instead of using a single method, we combine Hidden Markov Model (HMM)-based methods CJ-SPHMM and TMHMM with PSORT in secreted protein prediction. CJ-SPHMM is an HMM-based signal peptide prediction method, while TMHMM is an HMM-based transmembrane (TM) protein prediction algorithm. With CJ-SPHMM and TMHMM, proteins with predicted signal peptide and without predicted TM regions are taken as putative secreted proteins. This HMM-based approach predicts secreted protein with Ac (Accuracy) at 0.82 and Cc (Correlation coefficient) at 0.75, which are similar to PSORT with Ac at 0.82 and Cc at 0.76. When we further complement the HMM-based method, i.e., CJ-SPHMM + TMHMM with PSORT in secreted protein prediction, the Ac value is increased to 0.86 and the Cc value is increased to 0.81. Taking this combination strategy to search putative secreted proteins from the International Protein Index (IPI) maintained at the European Bioinformatics Institute (EBI), we constructed a putative human secretome with 5235 proteins. The prediction system described here can also be applied to predicting secreted proteins from other vertebrate proteomes.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off