Secondary wake instabilities of a blunt trailing edge profiled body as a basis for flow control

Secondary wake instabilities of a blunt trailing edge profiled body as a basis for flow control Flow in the wake of a blunt trailing edge profiled body, comprised of an elliptical leading edge and a rectangular trailing edge, has been investigated experimentally, to identify and characterize the secondary instabilities accompanying the von Kármán vortices. The experiments, which involve laser-induced fluorescence for visualization and particle image velocimetry for quantitative measurement of the wake instabilities, cover Reynolds numbers ranging from 250 to 2,150 based on thickness of the body, to include the wake transition regime. The dominant secondary instability appears as spanwise undulations in von Kármán vortices, which evolve into pairs of counter-rotating vortices, with features resembling the instability mechanism predicted by Ryan et al. (J Fluid Mech 538:1–29, 2005). Feasibility of a flow control approach based on interaction with the secondary instability using a series of discrete trailing edge injectors has also been investigated. The control approach mitigates the adverse effects of vortex shedding in certain conditions, where it is able to amplify the secondary instability effectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Secondary wake instabilities of a blunt trailing edge profiled body as a basis for flow control

Loading next page...
 
/lp/springer_journal/secondary-wake-instabilities-of-a-blunt-trailing-edge-profiled-body-as-PAttO42f5y
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1273-9
Publisher site
See Article on Publisher Site

Abstract

Flow in the wake of a blunt trailing edge profiled body, comprised of an elliptical leading edge and a rectangular trailing edge, has been investigated experimentally, to identify and characterize the secondary instabilities accompanying the von Kármán vortices. The experiments, which involve laser-induced fluorescence for visualization and particle image velocimetry for quantitative measurement of the wake instabilities, cover Reynolds numbers ranging from 250 to 2,150 based on thickness of the body, to include the wake transition regime. The dominant secondary instability appears as spanwise undulations in von Kármán vortices, which evolve into pairs of counter-rotating vortices, with features resembling the instability mechanism predicted by Ryan et al. (J Fluid Mech 538:1–29, 2005). Feasibility of a flow control approach based on interaction with the secondary instability using a series of discrete trailing edge injectors has also been investigated. The control approach mitigates the adverse effects of vortex shedding in certain conditions, where it is able to amplify the secondary instability effectively.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 15, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off