Secondary messengers and phospholipase A2 in auxin signal transduction

Secondary messengers and phospholipase A2 in auxin signal transduction Despite recent progress auxin signal transduction remains largely scetchy and enigmatic. A good body of evidence supports the notion that the ABP1 could be a functional receptor or part of a receptor, respectively, but this is not generally accepted. Evidence for other functional receptors is lacking, as is any clearcut evidence for a function of G proteins. Protons may serve as second messengers in guard cells but the existing evidence for a role of calcium remains to be clearified. Phospholipases C and D seem not to have a function in auxin signal transduction whereas the indications for a role of phospholipase A2 in auxin signal transduction accumulated recently. Mitogen-activated protein kinase (MAPK) is modulated by auxin and the protein kinase PINOID has a role in auxin transport modulation even though their functional linkage to other signalling molecules is ill-defined. It is hypothesized that signal transduction precedes activation of early genes such as IAA genes and that ubiquitination and the proteasome are a mechanism to integrate signal duration and signal strength in plants and act as major regulators of hormone sensitivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Secondary messengers and phospholipase A2 in auxin signal transduction

Loading next page...
 
/lp/springer_journal/secondary-messengers-and-phospholipase-a2-in-auxin-signal-transduction-L9R38s0fc6
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1015290510483
Publisher site
See Article on Publisher Site

Abstract

Despite recent progress auxin signal transduction remains largely scetchy and enigmatic. A good body of evidence supports the notion that the ABP1 could be a functional receptor or part of a receptor, respectively, but this is not generally accepted. Evidence for other functional receptors is lacking, as is any clearcut evidence for a function of G proteins. Protons may serve as second messengers in guard cells but the existing evidence for a role of calcium remains to be clearified. Phospholipases C and D seem not to have a function in auxin signal transduction whereas the indications for a role of phospholipase A2 in auxin signal transduction accumulated recently. Mitogen-activated protein kinase (MAPK) is modulated by auxin and the protein kinase PINOID has a role in auxin transport modulation even though their functional linkage to other signalling molecules is ill-defined. It is hypothesized that signal transduction precedes activation of early genes such as IAA genes and that ubiquitination and the proteasome are a mechanism to integrate signal duration and signal strength in plants and act as major regulators of hormone sensitivity.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off