Second-order coding rates for pure-loss bosonic channels

Second-order coding rates for pure-loss bosonic channels A pure-loss bosonic channel is a simple model for communication over free-space or fiber-optic links. More generally, phase-insensitive bosonic channels model other kinds of noise, such as thermalizing or amplifying processes. Recent work has established the classical capacity of all of these channels, and furthermore, it is now known that a strong converse theorem holds for the classical capacity of these channels under a particular photon-number constraint. The goal of the present paper is to initiate the study of second-order coding rates for these channels, by beginning with the simplest one, the pure-loss bosonic channel. In a second-order analysis of communication, one fixes the tolerable error probability and seeks to understand the back-off from capacity for a sufficiently large yet finite number of channel uses. We find a lower bound on the maximum achievable code size for the pure-loss bosonic channel, in terms of the known expression for its capacity and a quantity called channel dispersion. We accomplish this by proving a general “one-shot” coding theorem for channels with classical inputs and pure-state quantum outputs which reside in a separable Hilbert space. The theorem leads to an optimal second-order characterization when the channel output is finite-dimensional, and it remains an open question to determine whether the characterization is optimal for the pure-loss bosonic channel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Second-order coding rates for pure-loss bosonic channels

Loading next page...
 
/lp/springer_journal/second-order-coding-rates-for-pure-loss-bosonic-channels-uGdwqYqi1f
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-0997-x
Publisher site
See Article on Publisher Site

Abstract

A pure-loss bosonic channel is a simple model for communication over free-space or fiber-optic links. More generally, phase-insensitive bosonic channels model other kinds of noise, such as thermalizing or amplifying processes. Recent work has established the classical capacity of all of these channels, and furthermore, it is now known that a strong converse theorem holds for the classical capacity of these channels under a particular photon-number constraint. The goal of the present paper is to initiate the study of second-order coding rates for these channels, by beginning with the simplest one, the pure-loss bosonic channel. In a second-order analysis of communication, one fixes the tolerable error probability and seeks to understand the back-off from capacity for a sufficiently large yet finite number of channel uses. We find a lower bound on the maximum achievable code size for the pure-loss bosonic channel, in terms of the known expression for its capacity and a quantity called channel dispersion. We accomplish this by proving a general “one-shot” coding theorem for channels with classical inputs and pure-state quantum outputs which reside in a separable Hilbert space. The theorem leads to an optimal second-order characterization when the channel output is finite-dimensional, and it remains an open question to determine whether the characterization is optimal for the pure-loss bosonic channel.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 21, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off