Seasonal variations in size distribution, water-soluble ions, and carbon content of size-segregated aerosols over New Delhi

Seasonal variations in size distribution, water-soluble ions, and carbon content of... Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM10, PM0.95 was the dominant fraction (45%) followed by PM3–7.2 (20%), PM7.2–10 (15%), PM0.95–1.5 (10%), and PM1.5–3 (10%). All size fractions exceeded the ambient air quality standards of India for PM2.5. Annual average mass size distributions of ions were specific to size and ion(s); Ca2+, Mg2+, K+, NO3 −, and Cl− followed bimodal distribution while SO4 2− and NH4 + ions showed one mode in PM0.95. The concentrations of secondary WSII (NO3 −, SO4 2−, and NH4 +) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH4 +and Ca2+were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM0.95 and PM3–7.2 and PM7.2–10. This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8–31% of the total PM0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Seasonal variations in size distribution, water-soluble ions, and carbon content of size-segregated aerosols over New Delhi

Loading next page...
 
/lp/springer_journal/seasonal-variations-in-size-distribution-water-soluble-ions-and-carbon-fKfKpdWeTN
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0954-6
Publisher site
See Article on Publisher Site

Abstract

Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM10, PM0.95 was the dominant fraction (45%) followed by PM3–7.2 (20%), PM7.2–10 (15%), PM0.95–1.5 (10%), and PM1.5–3 (10%). All size fractions exceeded the ambient air quality standards of India for PM2.5. Annual average mass size distributions of ions were specific to size and ion(s); Ca2+, Mg2+, K+, NO3 −, and Cl− followed bimodal distribution while SO4 2− and NH4 + ions showed one mode in PM0.95. The concentrations of secondary WSII (NO3 −, SO4 2−, and NH4 +) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH4 +and Ca2+were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM0.95 and PM3–7.2 and PM7.2–10. This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8–31% of the total PM0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off