Seasonal Variations and Transformations of Climatic Currents with Depth on the Basis of Assimilation of New Climatic Data on Temperature and Salinity in a Model of the Black Sea

Seasonal Variations and Transformations of Climatic Currents with Depth on the Basis of... The seasonal climatic circulation of the sea reconstructed on the basis of assimilation of new arrays of many-year average hydrological data in a model is analyzed. Five layers are discovered in the structure of climatic currents in the sea in depth: the surface Ekman layer (∼ 10 m), a layer with small vertical gradients of the kinetic energy (∼ 10–60 m), a layer with relatively high vertical gradients of the kinetic energy (∼ 60–150 m), a layer with gradual decrease in the kinetic energy and intensification (from 250–350 m) of the east cyclonic gyre and Batumi anticyclonic eddy (∼ 150–1000 m), and an abyssal layer characterized by an almost barotropic velocity (∼ 1000–2000 m). The specific features of the seasonal evolution of currents at these depths are investigated. It is shown that the key role in the formation of deep-water circulation of the sea is played by the south east flow, east cyclonic gyre, and Batumi anticyclonic eddy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Seasonal Variations and Transformations of Climatic Currents with Depth on the Basis of Assimilation of New Climatic Data on Temperature and Salinity in a Model of the Black Sea

Loading next page...
 
/lp/springer_journal/seasonal-variations-and-transformations-of-climatic-currents-with-FXmutFv75Q
Publisher
Kluwer Academic Publishers-Consultants Bureau
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-006-0008-y
Publisher site
See Article on Publisher Site

Abstract

The seasonal climatic circulation of the sea reconstructed on the basis of assimilation of new arrays of many-year average hydrological data in a model is analyzed. Five layers are discovered in the structure of climatic currents in the sea in depth: the surface Ekman layer (∼ 10 m), a layer with small vertical gradients of the kinetic energy (∼ 10–60 m), a layer with relatively high vertical gradients of the kinetic energy (∼ 60–150 m), a layer with gradual decrease in the kinetic energy and intensification (from 250–350 m) of the east cyclonic gyre and Batumi anticyclonic eddy (∼ 150–1000 m), and an abyssal layer characterized by an almost barotropic velocity (∼ 1000–2000 m). The specific features of the seasonal evolution of currents at these depths are investigated. It is shown that the key role in the formation of deep-water circulation of the sea is played by the south east flow, east cyclonic gyre, and Batumi anticyclonic eddy.

Journal

Physical OceanographySpringer Journals

Published: Feb 27, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off