Seasonal structural and functional changes in the photosynthetic apparatus of evergreen conifers

Seasonal structural and functional changes in the photosynthetic apparatus of evergreen conifers We conducted a detail study of the photosynthetic apparatus in assimilating organs of three introduced evergreen conifer species: Taxus cuspidate S. et Z. ex E. (Far-Eastern yew), Thuja occidentalis L. (arbovitae “green”), and Th. occidentalis f. “Reingold” (arbovitae “yellow”) at various times in their life cycle. We studied the potential photosynthesis rate; composition and ratios of pigments, including primary carotenoids; the violaxanthin cycle (VC) activity, the synthesis of a secondary carotenoid, rhodoxanthin; and chloroplast ultrastructure. In winter and spring, β-carotene and lutein (primary carotenoids) contents were relatively constant in yew and arbovitae “yellow”. In December, the VC in yew was balanced and in arbovitae “yellow” unbalanced. In arbovitae “yellow”, the zeaxanthin pool was heterogeneous, and only part of it took part in the VC. It can be assumed that the other part of the pool can be oxidized to form a secondary carotenoid, rhodoxanthin. This secondary carotenoid was also accumulated in arbovitae “green”; its synthesis took place during the season, when the photosynthesis rate of plants was the lowest, and a significant chloroplast reorganization occurred (the number of thylakoids in grana decreased and plastoglobules appeared). We suppose that rhodoxanthin forms a filter for the light under the conditions of high insolation in winter. Thus, the evergreen conifer plants studied, which are adapted to growing at high latitudes where temperature is low and insolation is high in winter and spring, have a system for protecting the photosynthetic apparatus against photodestruction. In the basis of this system, the primary and secondary carotenoids lie, whose content changes during the year. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Seasonal structural and functional changes in the photosynthetic apparatus of evergreen conifers

Loading next page...
 
/lp/springer_journal/seasonal-structural-and-functional-changes-in-the-photosynthetic-KAZsVh8Mxm
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443709050045
Publisher site
See Article on Publisher Site

Abstract

We conducted a detail study of the photosynthetic apparatus in assimilating organs of three introduced evergreen conifer species: Taxus cuspidate S. et Z. ex E. (Far-Eastern yew), Thuja occidentalis L. (arbovitae “green”), and Th. occidentalis f. “Reingold” (arbovitae “yellow”) at various times in their life cycle. We studied the potential photosynthesis rate; composition and ratios of pigments, including primary carotenoids; the violaxanthin cycle (VC) activity, the synthesis of a secondary carotenoid, rhodoxanthin; and chloroplast ultrastructure. In winter and spring, β-carotene and lutein (primary carotenoids) contents were relatively constant in yew and arbovitae “yellow”. In December, the VC in yew was balanced and in arbovitae “yellow” unbalanced. In arbovitae “yellow”, the zeaxanthin pool was heterogeneous, and only part of it took part in the VC. It can be assumed that the other part of the pool can be oxidized to form a secondary carotenoid, rhodoxanthin. This secondary carotenoid was also accumulated in arbovitae “green”; its synthesis took place during the season, when the photosynthesis rate of plants was the lowest, and a significant chloroplast reorganization occurred (the number of thylakoids in grana decreased and plastoglobules appeared). We suppose that rhodoxanthin forms a filter for the light under the conditions of high insolation in winter. Thus, the evergreen conifer plants studied, which are adapted to growing at high latitudes where temperature is low and insolation is high in winter and spring, have a system for protecting the photosynthetic apparatus against photodestruction. In the basis of this system, the primary and secondary carotenoids lie, whose content changes during the year.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Sep 8, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off