Seasonal Changes in the Composition and Content of Dehydrins in Winter Wheat Plants

Seasonal Changes in the Composition and Content of Dehydrins in Winter Wheat Plants Seasonal changes in the pattern and content of dehydrins in winter wheat (Triticum aestivum) plants grown under field and laboratory conditions were studied by one-dimensional PAGE and immunochemical methods. During hardening, plants accumulated dehydrin-like polypeptides with mol wts of 209, 196, 66, 50, and 41 kD. In winter, low-molecular-weight dehydrins with mol wts of 24, 22, 17, 15, and 12 kD were synthesized and accumulated as well. Their content dropped sharply in spring when plants became unhardened. Accumulation/disappearance of these proteins corresponded to the fluctuations in wintering plant frost tolerance before winter and in spring. It is assumed that both high- and medium-molecular-weight dehydrins are involved in plant stress responses and adaptation, whereas low-molecular-weight dehydrins are evidently involved only in the process of low-temperature adaptation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Seasonal Changes in the Composition and Content of Dehydrins in Winter Wheat Plants

Loading next page...
 
/lp/springer_journal/seasonal-changes-in-the-composition-and-content-of-dehydrins-in-winter-vVqAj1HlwB
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000040750.10102.72
Publisher site
See Article on Publisher Site

Abstract

Seasonal changes in the pattern and content of dehydrins in winter wheat (Triticum aestivum) plants grown under field and laboratory conditions were studied by one-dimensional PAGE and immunochemical methods. During hardening, plants accumulated dehydrin-like polypeptides with mol wts of 209, 196, 66, 50, and 41 kD. In winter, low-molecular-weight dehydrins with mol wts of 24, 22, 17, 15, and 12 kD were synthesized and accumulated as well. Their content dropped sharply in spring when plants became unhardened. Accumulation/disappearance of these proteins corresponded to the fluctuations in wintering plant frost tolerance before winter and in spring. It is assumed that both high- and medium-molecular-weight dehydrins are involved in plant stress responses and adaptation, whereas low-molecular-weight dehydrins are evidently involved only in the process of low-temperature adaptation.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 22, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off