Seasonal and cell type specific expression of sulfate transporters in the phloem of Populus reveals tree specific characteristics for SO4 2− storage and mobilization

Seasonal and cell type specific expression of sulfate transporters in the phloem of Populus... The storage and mobilization of nutrients in wood and bark tissues is a typical feature of trees. Sulfur can be stored as sulfate, which is transported from source to sink tissues through the phloem. In the present study two transcripts encoding sulfate transporters (SULTR) were identified in the phloem of grey poplar (Populus tremula × P. alba). Their cell-specific expression was analyzed throughout poplar in source tissues, such as mature leaves, and in sink tissues, such as the wood and bark of the stem, roots and the shoot apex. PtaSULTR1;1 mRNA was detected in companion cells of the transport phloem, in the phloem of high-order leaf veins and in fine roots. PtaSULTR3;3a mRNA was found exclusively in the transport phloem and here in both, companion cells and sieve elements. Both sulfate transporter transcripts were located in xylem parenchyma cells indicating a role for PtaSULTR1;1 and PtaSULTR3;3a in xylem unloading. Changes in mRNA abundance of these and of the sulfate transporters PtaSULTR4;1 and PtaSULTR4;2 were analyzed over an entire growing season. The expression of PtaSULTR3;3a and of the putative vacuolar efflux transporter PtaSULTR4;2 correlated negatively with the sulfate content in the bark. Furthermore, the expression pattern of both PtaSULTR3;3a and PtaSULTR4;2 correlated significantly with temperature and day length. Thus both SULTRs seem to be involved in mobilization of sulfate during spring: PtaSULTR4;2 mediating efflux from the vacuole and PtaSULTR3;3a mediating loading into the transport phloem. In contrast, the abundance of PtaSULTR1;1 and PtaSULTR4;1 transcripts was not affected by environmental changes throughout the whole season. The transcript abundance of all tested sulfate transporters in leaves was independent of weather conditions. However, PtaSULTR1;1 abundance correlated negatively with sulfate content in leaves, supporting its function in phloem loading. Taken together, these findings indicate a transcriptional regulation of sulfate distribution in poplar trees. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Seasonal and cell type specific expression of sulfate transporters in the phloem of Populus reveals tree specific characteristics for SO4 2− storage and mobilization

Loading next page...
 
/lp/springer_journal/seasonal-and-cell-type-specific-expression-of-sulfate-transporters-in-Ej5NodQv0Z
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9587-6
Publisher site
See Article on Publisher Site

Abstract

The storage and mobilization of nutrients in wood and bark tissues is a typical feature of trees. Sulfur can be stored as sulfate, which is transported from source to sink tissues through the phloem. In the present study two transcripts encoding sulfate transporters (SULTR) were identified in the phloem of grey poplar (Populus tremula × P. alba). Their cell-specific expression was analyzed throughout poplar in source tissues, such as mature leaves, and in sink tissues, such as the wood and bark of the stem, roots and the shoot apex. PtaSULTR1;1 mRNA was detected in companion cells of the transport phloem, in the phloem of high-order leaf veins and in fine roots. PtaSULTR3;3a mRNA was found exclusively in the transport phloem and here in both, companion cells and sieve elements. Both sulfate transporter transcripts were located in xylem parenchyma cells indicating a role for PtaSULTR1;1 and PtaSULTR3;3a in xylem unloading. Changes in mRNA abundance of these and of the sulfate transporters PtaSULTR4;1 and PtaSULTR4;2 were analyzed over an entire growing season. The expression of PtaSULTR3;3a and of the putative vacuolar efflux transporter PtaSULTR4;2 correlated negatively with the sulfate content in the bark. Furthermore, the expression pattern of both PtaSULTR3;3a and PtaSULTR4;2 correlated significantly with temperature and day length. Thus both SULTRs seem to be involved in mobilization of sulfate during spring: PtaSULTR4;2 mediating efflux from the vacuole and PtaSULTR3;3a mediating loading into the transport phloem. In contrast, the abundance of PtaSULTR1;1 and PtaSULTR4;1 transcripts was not affected by environmental changes throughout the whole season. The transcript abundance of all tested sulfate transporters in leaves was independent of weather conditions. However, PtaSULTR1;1 abundance correlated negatively with sulfate content in leaves, supporting its function in phloem loading. Taken together, these findings indicate a transcriptional regulation of sulfate distribution in poplar trees.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 20, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off