Searching in metric spaces by spatial approximation

Searching in metric spaces by spatial approximation We propose a new data structure to search in metric spaces. A metric space is formed by a collection of objects and a distance function defined among them which satisfies the triangle inequality. The goal is, given a set of objects and a query, retrieve those objects close enough to the query. The complexity measure is the number of distances computed to achieve this goal. Our data structure, called sa-tree (“spatial approximation tree”), is based on approaching the searched objects spatially, that is, getting closer and closer to them, rather than the classic divide-and-conquer approach of other data structures. We analyze our method and show that the number of distance evaluations to search among n objects is sublinear. We show experimentally that the sa-tree is the best existing technique when the metric space is hard to search or the query has low selectivity. These are the most important unsolved cases in real applications. As a practical advantage, our data structure is one of the few that does not need to tune parameters, which makes it appealing for use by non-experts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Searching in metric spaces by spatial approximation

Loading next page...
 
/lp/springer_journal/searching-in-metric-spaces-by-spatial-approximation-MJVu0Oj6Bj
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s007780200060
Publisher site
See Article on Publisher Site

Abstract

We propose a new data structure to search in metric spaces. A metric space is formed by a collection of objects and a distance function defined among them which satisfies the triangle inequality. The goal is, given a set of objects and a query, retrieve those objects close enough to the query. The complexity measure is the number of distances computed to achieve this goal. Our data structure, called sa-tree (“spatial approximation tree”), is based on approaching the searched objects spatially, that is, getting closer and closer to them, rather than the classic divide-and-conquer approach of other data structures. We analyze our method and show that the number of distance evaluations to search among n objects is sublinear. We show experimentally that the sa-tree is the best existing technique when the metric space is hard to search or the query has low selectivity. These are the most important unsolved cases in real applications. As a practical advantage, our data structure is one of the few that does not need to tune parameters, which makes it appealing for use by non-experts.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off