Searching in metric spaces by spatial approximation

Searching in metric spaces by spatial approximation We propose a new data structure to search in metric spaces. A metric space is formed by a collection of objects and a distance function defined among them which satisfies the triangle inequality. The goal is, given a set of objects and a query, retrieve those objects close enough to the query. The complexity measure is the number of distances computed to achieve this goal. Our data structure, called sa-tree (“spatial approximation tree”), is based on approaching the searched objects spatially, that is, getting closer and closer to them, rather than the classic divide-and-conquer approach of other data structures. We analyze our method and show that the number of distance evaluations to search among n objects is sublinear. We show experimentally that the sa-tree is the best existing technique when the metric space is hard to search or the query has low selectivity. These are the most important unsolved cases in real applications. As a practical advantage, our data structure is one of the few that does not need to tune parameters, which makes it appealing for use by non-experts. The VLDB Journal Springer Journals

Searching in metric spaces by spatial approximation

Loading next page...
Copyright © 2002 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial