Screening of peptide specific to cholangiocarcinoma cancer cells using an integrated microfluidic system and phage display technology

Screening of peptide specific to cholangiocarcinoma cancer cells using an integrated microfluidic... Cholangiocarcinoma (CCA) is a cancer of the bile duct with high mortality rate and poor prognosis, owing to the difficulty in the early diagnosis and prognosis. The specific biomarkers or affinity reagents toward CCA cells could be great tools to assist in detection of CCA. However, screening of biomarkers/affinity reagents are generally labor-intensive, time-consuming and requiring large volume of samples and reagents. Therefore, we developed an integrated microfluidic system which could automatically perform selections of biomarkers and affinity reagents using phage display techniques. The experimental results showed that the selection of phage-displayed peptides bound to CCA cells was successfully demonstrated on the integrated microfluidic system using fewer reagents, samples and less time (5.25 h per biopanning round, and continuously performed for only 4 panning rounds). Three oligopeptides were screened, and their specificity and affinity toward CCA cells were characterized. Furthermore, comparing to conventional EpiEnrich beads for cancer cell capture, the screened CCA-specific peptides showed relatively low capture rate over control normal cells. It is envisioned that this microfluidic system may be a powerful tool for screening of biomarkers/affinity reagents in clinical diagnosis and target therapy for CCA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microfluids and Nanofluids Springer Journals

Screening of peptide specific to cholangiocarcinoma cancer cells using an integrated microfluidic system and phage display technology

Loading next page...
 
/lp/springer_journal/screening-of-peptide-specific-to-cholangiocarcinoma-cancer-cells-using-HE9KxLKVMk
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Engineering; Engineering Fluid Dynamics; Biomedical Engineering; Analytical Chemistry; Nanotechnology and Microengineering
ISSN
1613-4982
eISSN
1613-4990
D.O.I.
10.1007/s10404-017-1983-7
Publisher site
See Article on Publisher Site

Abstract

Cholangiocarcinoma (CCA) is a cancer of the bile duct with high mortality rate and poor prognosis, owing to the difficulty in the early diagnosis and prognosis. The specific biomarkers or affinity reagents toward CCA cells could be great tools to assist in detection of CCA. However, screening of biomarkers/affinity reagents are generally labor-intensive, time-consuming and requiring large volume of samples and reagents. Therefore, we developed an integrated microfluidic system which could automatically perform selections of biomarkers and affinity reagents using phage display techniques. The experimental results showed that the selection of phage-displayed peptides bound to CCA cells was successfully demonstrated on the integrated microfluidic system using fewer reagents, samples and less time (5.25 h per biopanning round, and continuously performed for only 4 panning rounds). Three oligopeptides were screened, and their specificity and affinity toward CCA cells were characterized. Furthermore, comparing to conventional EpiEnrich beads for cancer cell capture, the screened CCA-specific peptides showed relatively low capture rate over control normal cells. It is envisioned that this microfluidic system may be a powerful tool for screening of biomarkers/affinity reagents in clinical diagnosis and target therapy for CCA.

Journal

Microfluids and NanofluidsSpringer Journals

Published: Aug 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off