Screening of electrocoagulation process parameters for treated palm oil mill effluent using minimum-runs resolution IV design

Screening of electrocoagulation process parameters for treated palm oil mill effluent using... The present study aimed at the screening of parameters for electrocoagulation treatment of treated palm oil mill effluent using minimum-runs resolution IV design. The responses examined include: chemical oxygen demand removal (%), total suspended sol- ids removal (%) and turbidity reduction (%), and the varied dependent factors comprise: electrical current density (mA/cm ), time (min), pH, electrolyte concentration (g/L), stirring speed (rpm), electrode spacing (mm) and electrode configuration (monopolar or dipolar). The statistical results revealed that the current density has a significant influence on the treatment performance at two-level interactions with pH, electrode spacing and electrode concentration and at three-level correlations with time and pH. Thus, the most important factors affecting the removal efficiency of the organic compounds were found to be pH, time, electrode spacing, electrolyte concentration and electrode configuration at a P value less than 0.05, respectively, in the descending order of significance. Therefore, the optimized electrocoagulation process could be reached with current density equal to 5 mA/cm , electrolysis time of 5 min, electrode spacing of 5 mm and using monopolar electrode configuration. This combination provided the maximum ability of the process for chemical oxygen demand (68.84%), total suspended solids (93.27%) and turbidity reduc- tion (92.88%) predictions, with the http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Environmental Science and Technology Springer Journals

Screening of electrocoagulation process parameters for treated palm oil mill effluent using minimum-runs resolution IV design

Loading next page...
 
/lp/springer_journal/screening-of-electrocoagulation-process-parameters-for-treated-palm-cfh5TwusFE
Publisher
Springer Journals
Copyright
Copyright © 2018 by Islamic Azad University (IAU)
Subject
Environment; Environment, general; Environmental Science and Engineering; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Soil Science & Conservation; Ecotoxicology
ISSN
1735-1472
eISSN
1735-2630
D.O.I.
10.1007/s13762-018-1708-9
Publisher site
See Article on Publisher Site

Abstract

The present study aimed at the screening of parameters for electrocoagulation treatment of treated palm oil mill effluent using minimum-runs resolution IV design. The responses examined include: chemical oxygen demand removal (%), total suspended sol- ids removal (%) and turbidity reduction (%), and the varied dependent factors comprise: electrical current density (mA/cm ), time (min), pH, electrolyte concentration (g/L), stirring speed (rpm), electrode spacing (mm) and electrode configuration (monopolar or dipolar). The statistical results revealed that the current density has a significant influence on the treatment performance at two-level interactions with pH, electrode spacing and electrode concentration and at three-level correlations with time and pH. Thus, the most important factors affecting the removal efficiency of the organic compounds were found to be pH, time, electrode spacing, electrolyte concentration and electrode configuration at a P value less than 0.05, respectively, in the descending order of significance. Therefore, the optimized electrocoagulation process could be reached with current density equal to 5 mA/cm , electrolysis time of 5 min, electrode spacing of 5 mm and using monopolar electrode configuration. This combination provided the maximum ability of the process for chemical oxygen demand (68.84%), total suspended solids (93.27%) and turbidity reduc- tion (92.88%) predictions, with the

Journal

International Journal of Environmental Science and TechnologySpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off