Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and Mn3O4 microcubes for ultrasensitive determination of nitrite

Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and... The authors describe a screen-printed electrode (SPE) modified with a composite consisting of Mn3O4 microcubes and thin sheets of graphene oxide for use in amperometric determination of nitrite. The composite was prepared by a hydrothermal method, and its morphology, elemental composition, diffraction, impedance and electrochemical properties were studied. The modified SPE displays excellent electrocatalytic activity towards nitrite, and the oxidation peak current (measured typically at 0.70 V vs. Ag/AgCl) is related to the concentration of nitrite in the range between 0.1 and 1300 μM, with a 20 nM detection limit. The method was successfully applied to the determination of nitrite in spiked samples of beef and water. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and Mn3O4 microcubes for ultrasensitive determination of nitrite

Loading next page...
 
/lp/springer_journal/screen-printed-electrode-modified-with-a-composite-prepared-from-FfU7t8A5AP
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-017-2379-9
Publisher site
See Article on Publisher Site

Abstract

The authors describe a screen-printed electrode (SPE) modified with a composite consisting of Mn3O4 microcubes and thin sheets of graphene oxide for use in amperometric determination of nitrite. The composite was prepared by a hydrothermal method, and its morphology, elemental composition, diffraction, impedance and electrochemical properties were studied. The modified SPE displays excellent electrocatalytic activity towards nitrite, and the oxidation peak current (measured typically at 0.70 V vs. Ag/AgCl) is related to the concentration of nitrite in the range between 0.1 and 1300 μM, with a 20 nM detection limit. The method was successfully applied to the determination of nitrite in spiked samples of beef and water.

Journal

Microchimica ActaSpringer Journals

Published: Jul 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off