Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal action: 2. Functioning of antioxidant enzymes in pine seedlings under chronic zinc action

Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal... Functioning of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APO), and guaiacol peroxidases (GPO)) and low-molecular organic ROS scavengers (proline and phenolic compounds) in various organs (roots, cotyledons, stem, and needle) of 6-week-old seedlings of pine (Pinus sylvestris L.) developing in the chronic presence of ZnSO4 (50, 100, and 150 μM). Pine seedlings were grown in water culture in the climate-controlled chamber at an irradiance of 37.6 W/m2 with a 16-h photoperiod, an air temperature of 23 ± 1/15 ± 1°C (day/night), and a relative humidity of 55/70% (day/night). Endogenous Zn content was a key factor determining SOD activity decomposing superoxide into H2O2 and O2. Hydrogen peroxide produced is efficiently destroyed by CAT and also by APO and GPO. At the same time, the content of proline increased (especially at 150 μM ZnSO4), but the content of phenolic compounds remained unchanged. All these processes help to maintain stable intracellular levels of O 2 ⊙− and H2O2 at elevated zinc concentrations and to prevent generation of hydroxyl radical and development of oxidative stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal action: 2. Functioning of antioxidant enzymes in pine seedlings under chronic zinc action

Loading next page...
 
/lp/springer_journal/scots-pine-as-a-model-plant-for-studying-the-mechanisms-of-conifers-3UkbzxvCc2
Publisher
Springer Journals
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712010098
Publisher site
See Article on Publisher Site

Abstract

Functioning of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APO), and guaiacol peroxidases (GPO)) and low-molecular organic ROS scavengers (proline and phenolic compounds) in various organs (roots, cotyledons, stem, and needle) of 6-week-old seedlings of pine (Pinus sylvestris L.) developing in the chronic presence of ZnSO4 (50, 100, and 150 μM). Pine seedlings were grown in water culture in the climate-controlled chamber at an irradiance of 37.6 W/m2 with a 16-h photoperiod, an air temperature of 23 ± 1/15 ± 1°C (day/night), and a relative humidity of 55/70% (day/night). Endogenous Zn content was a key factor determining SOD activity decomposing superoxide into H2O2 and O2. Hydrogen peroxide produced is efficiently destroyed by CAT and also by APO and GPO. At the same time, the content of proline increased (especially at 150 μM ZnSO4), but the content of phenolic compounds remained unchanged. All these processes help to maintain stable intracellular levels of O 2 ⊙− and H2O2 at elevated zinc concentrations and to prevent generation of hydroxyl radical and development of oxidative stress.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 23, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off