SCOPE: parallel databases meet MapReduce

SCOPE: parallel databases meet MapReduce Companies providing cloud-scale data services have increasing needs to store and analyze massive data sets, such as search logs, click streams, and web graph data. For cost and performance reasons, processing is typically done on large clusters of tens of thousands of commodity machines. Such massive data analysis on large clusters presents new opportunities and challenges for developing a highly scalable and efficient distributed computation system that is easy to program and supports complex system optimization to maximize performance and reliability. In this paper, we describe a distributed computation system, Structured Computations Optimized for Parallel Execution ( Scope ), targeted for this type of massive data analysis. Scope combines benefits from both traditional parallel databases and MapReduce execution engines to allow easy programmability and deliver massive scalability and high performance through advanced optimization. Similar to parallel databases, the system has a SQL-like declarative scripting language with no explicit parallelism, while being amenable to efficient parallel execution on large clusters. An optimizer is responsible for converting scripts into efficient execution plans for the distributed computation engine. A physical execution plan consists of a directed acyclic graph of vertices. Execution of the plan is orchestrated by a job manager that schedules execution on available machines and provides fault tolerance and recovery, much like MapReduce systems. Scope is being used daily for a variety of data analysis and data mining applications over tens of thousands of machines at Microsoft, powering Bing, and other online services. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Loading next page...
 
/lp/springer_journal/scope-parallel-databases-meet-mapreduce-TujpNzPiE1
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0280-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial