SCOPE: parallel databases meet MapReduce

SCOPE: parallel databases meet MapReduce Companies providing cloud-scale data services have increasing needs to store and analyze massive data sets, such as search logs, click streams, and web graph data. For cost and performance reasons, processing is typically done on large clusters of tens of thousands of commodity machines. Such massive data analysis on large clusters presents new opportunities and challenges for developing a highly scalable and efficient distributed computation system that is easy to program and supports complex system optimization to maximize performance and reliability. In this paper, we describe a distributed computation system, Structured Computations Optimized for Parallel Execution ( Scope ), targeted for this type of massive data analysis. Scope combines benefits from both traditional parallel databases and MapReduce execution engines to allow easy programmability and deliver massive scalability and high performance through advanced optimization. Similar to parallel databases, the system has a SQL-like declarative scripting language with no explicit parallelism, while being amenable to efficient parallel execution on large clusters. An optimizer is responsible for converting scripts into efficient execution plans for the distributed computation engine. A physical execution plan consists of a directed acyclic graph of vertices. Execution of the plan is orchestrated by a job manager that schedules execution on available machines and provides fault tolerance and recovery, much like MapReduce systems. Scope is being used daily for a variety of data analysis and data mining applications over tens of thousands of machines at Microsoft, powering Bing, and other online services. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals
Loading next page...
 
/lp/springer_journal/scope-parallel-databases-meet-mapreduce-TujpNzPiE1
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0280-z
Publisher site
See Article on Publisher Site

Abstract

Companies providing cloud-scale data services have increasing needs to store and analyze massive data sets, such as search logs, click streams, and web graph data. For cost and performance reasons, processing is typically done on large clusters of tens of thousands of commodity machines. Such massive data analysis on large clusters presents new opportunities and challenges for developing a highly scalable and efficient distributed computation system that is easy to program and supports complex system optimization to maximize performance and reliability. In this paper, we describe a distributed computation system, Structured Computations Optimized for Parallel Execution ( Scope ), targeted for this type of massive data analysis. Scope combines benefits from both traditional parallel databases and MapReduce execution engines to allow easy programmability and deliver massive scalability and high performance through advanced optimization. Similar to parallel databases, the system has a SQL-like declarative scripting language with no explicit parallelism, while being amenable to efficient parallel execution on large clusters. An optimizer is responsible for converting scripts into efficient execution plans for the distributed computation engine. A physical execution plan consists of a directed acyclic graph of vertices. Execution of the plan is orchestrated by a job manager that schedules execution on available machines and provides fault tolerance and recovery, much like MapReduce systems. Scope is being used daily for a variety of data analysis and data mining applications over tens of thousands of machines at Microsoft, powering Bing, and other online services.

Journal

The VLDB JournalSpringer Journals

Published: Oct 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off