Schmidt modes and entanglement in continuous-variable quantum systems

Schmidt modes and entanglement in continuous-variable quantum systems The extraction of Schmidt modes for continuous-variable systems is considered. An algorithm based on the singular-value decomposition of a matrix is proposed. It is applied to the entanglement in (i) an atom—photon system with spontaneous emission and (ii) a system of biphotons with spontaneous parametric downconversion (SPDC) of type II. For the atom—photon system, the evolution of entangled states is found to be governed by a parameter approximately equal to the fine-structure constant times the atom-to-electron mass ratio. An analysis is made of the dynamics of atom—photon entanglement on the assumption that the system’s evolution is determined by the superposition of an initial and a final state. It is shown that in the course of emission the entanglement entropy first rises on a timescale of order the excited-state lifetime and then falls, approaching asymptotically a residual level due to the initial energy spread of the atomic packet (momentum spread squared). SPDC of type II is analyzed by means of the polarization density matrix and a newly introduced coherence parameter for two spatially separated modes. The loss of intermodal coherence is addressed that results from the difference in behavior between ordinary-and extraordinary-ray photons in a nonlinear crystal. The degree of intermodal coherence is investigated as a function of the product of crystal length and pump bandwidth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Schmidt modes and entanglement in continuous-variable quantum systems

Loading next page...
 
/lp/springer_journal/schmidt-modes-and-entanglement-in-continuous-variable-quantum-systems-tXSruzSJPX
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739706010021
Publisher site
See Article on Publisher Site

Abstract

The extraction of Schmidt modes for continuous-variable systems is considered. An algorithm based on the singular-value decomposition of a matrix is proposed. It is applied to the entanglement in (i) an atom—photon system with spontaneous emission and (ii) a system of biphotons with spontaneous parametric downconversion (SPDC) of type II. For the atom—photon system, the evolution of entangled states is found to be governed by a parameter approximately equal to the fine-structure constant times the atom-to-electron mass ratio. An analysis is made of the dynamics of atom—photon entanglement on the assumption that the system’s evolution is determined by the superposition of an initial and a final state. It is shown that in the course of emission the entanglement entropy first rises on a timescale of order the excited-state lifetime and then falls, approaching asymptotically a residual level due to the initial energy spread of the atomic packet (momentum spread squared). SPDC of type II is analyzed by means of the polarization density matrix and a newly introduced coherence parameter for two spatially separated modes. The loss of intermodal coherence is addressed that results from the difference in behavior between ordinary-and extraordinary-ray photons in a nonlinear crystal. The degree of intermodal coherence is investigated as a function of the product of crystal length and pump bandwidth.

Journal

Russian MicroelectronicsSpringer Journals

Published: Feb 22, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off