Schlieren imaging of viscous fingering in a horizontal Hele-Shaw cell

Schlieren imaging of viscous fingering in a horizontal Hele-Shaw cell Interfaces between different fluids can be unstable with regard to hydrodynamic instabilities such as viscous fingering or buoyancy-driven convection. To study such instabilities experimentally for transparent fluids, dyes or chemical indicators are most often used to track the dynamics. While the interfacial deformation can easily be tracked by color changes, it is difficult to have access to the internal flow structure for comparison with theoretical predictions. To overcome this problem, a modification of a Schlieren technique is introduced to image 3D flows during viscously driven instabilities in a horizontal Hele-Shaw cell without using any dye or chemical indicator. The method is exquisitely sensitive, readily yielding information about 3D flows in gaps under a millimeter and allowing imaging of the flow structure internal to the fingers, rather than merely imaging the flow boundary. Following a description of the technique, visualization of dynamics for nonreactive water–glycerol and reactive displacements is presented revealing previously unobserved internal flows. These flows are tentatively interpreted in terms of known theoretical predictions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Schlieren imaging of viscous fingering in a horizontal Hele-Shaw cell

Loading next page...
 
/lp/springer_journal/schlieren-imaging-of-viscous-fingering-in-a-horizontal-hele-shaw-cell-L0fkk7JyRr
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2121-0
Publisher site
See Article on Publisher Site

Abstract

Interfaces between different fluids can be unstable with regard to hydrodynamic instabilities such as viscous fingering or buoyancy-driven convection. To study such instabilities experimentally for transparent fluids, dyes or chemical indicators are most often used to track the dynamics. While the interfacial deformation can easily be tracked by color changes, it is difficult to have access to the internal flow structure for comparison with theoretical predictions. To overcome this problem, a modification of a Schlieren technique is introduced to image 3D flows during viscously driven instabilities in a horizontal Hele-Shaw cell without using any dye or chemical indicator. The method is exquisitely sensitive, readily yielding information about 3D flows in gaps under a millimeter and allowing imaging of the flow structure internal to the fingers, rather than merely imaging the flow boundary. Following a description of the technique, visualization of dynamics for nonreactive water–glycerol and reactive displacements is presented revealing previously unobserved internal flows. These flows are tentatively interpreted in terms of known theoretical predictions.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 13, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off