Scheme for assisted cloning an unknown arbitrary three-qubit state

Scheme for assisted cloning an unknown arbitrary three-qubit state We present a scheme for perfect cloning or orthogonal complementing an unknown arbitrary three-qubit state with assistance. This cloning scheme is divided into two stages. In the first stage, the initial state can be teleported from a sender to a receiver probabilistically via three partially entangled states. In the second stage, the exact copying and orthogonal complementing of the three-qubit state can be created with unity fidelity in a probabilistic manner with the state preparer performing an appropriate tri-particle projective measurement. It is shown that for some special ensembles of the three-qubit state our assisted cloning scheme can be achieved exactly and deterministically. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Scheme for assisted cloning an unknown arbitrary three-qubit state

Loading next page...
 
/lp/springer_journal/scheme-for-assisted-cloning-an-unknown-arbitrary-three-qubit-state-ittRZ0sx80
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-010-0218-6
Publisher site
See Article on Publisher Site

Abstract

We present a scheme for perfect cloning or orthogonal complementing an unknown arbitrary three-qubit state with assistance. This cloning scheme is divided into two stages. In the first stage, the initial state can be teleported from a sender to a receiver probabilistically via three partially entangled states. In the second stage, the exact copying and orthogonal complementing of the three-qubit state can be created with unity fidelity in a probabilistic manner with the state preparer performing an appropriate tri-particle projective measurement. It is shown that for some special ensembles of the three-qubit state our assisted cloning scheme can be achieved exactly and deterministically.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 14, 2010

References

  • Quantum anti-cloning
    Song, D.; Hardy, L.
  • Assisted cloning of an unknown two-particle entangled state
    Zhan, Y.B.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off