Schema mediation for large-scale semantic data sharing

Schema mediation for large-scale semantic data sharing Intuitively, data management and data integration tools should be well suited for exchanging information in a semantically meaningful way. Unfortunately, they suffer from two significant problems: they typically require a common and comprehensive schema design before they can be used to store or share information, and they are difficult to extend because schema evolution is heavyweight and may break backward compatibility. As a result, many large-scale data sharing tasks are more easily facilitated by non-database-oriented tools that have little support for semantics. The goal of the peer data management system (PDMS) is to address this need: we propose the use of a decentralized, easily extensible data management architecture in which any user can contribute new data, schema information, or even mappings between other peers’ schemas. PDMSs represent a natural step beyond data integration systems, replacing their single logical schema with an interlinked collection of semantic mappings between peers’ individual schemas. This paper considers the problem of schema mediation in a PDMS. Our first contribution is a flexible language for mediating between peer schemas that extends known data integration formalisms to our more complex architecture. We precisely characterize the complexity of query answering for our language. Next, we describe a reformulation algorithm for our language that generalizes both global-as-view and local-as-view query answering algorithms. Then we describe several methods for optimizing the reformulation algorithm and an initial set of experiments studying its performance. Finally, we define and consider several global problems in managing semantic mappings in a PDMS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Schema mediation for large-scale semantic data sharing

Loading next page...
 
/lp/springer_journal/schema-mediation-for-large-scale-semantic-data-sharing-2rEViZd25z
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-003-0116-y
Publisher site
See Article on Publisher Site

Abstract

Intuitively, data management and data integration tools should be well suited for exchanging information in a semantically meaningful way. Unfortunately, they suffer from two significant problems: they typically require a common and comprehensive schema design before they can be used to store or share information, and they are difficult to extend because schema evolution is heavyweight and may break backward compatibility. As a result, many large-scale data sharing tasks are more easily facilitated by non-database-oriented tools that have little support for semantics. The goal of the peer data management system (PDMS) is to address this need: we propose the use of a decentralized, easily extensible data management architecture in which any user can contribute new data, schema information, or even mappings between other peers’ schemas. PDMSs represent a natural step beyond data integration systems, replacing their single logical schema with an interlinked collection of semantic mappings between peers’ individual schemas. This paper considers the problem of schema mediation in a PDMS. Our first contribution is a flexible language for mediating between peer schemas that extends known data integration formalisms to our more complex architecture. We precisely characterize the complexity of query answering for our language. Next, we describe a reformulation algorithm for our language that generalizes both global-as-view and local-as-view query answering algorithms. Then we describe several methods for optimizing the reformulation algorithm and an initial set of experiments studying its performance. Finally, we define and consider several global problems in managing semantic mappings in a PDMS.

Journal

The VLDB JournalSpringer Journals

Published: Mar 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off