Schema matching prediction with applications to data source discovery and dynamic ensembling

Schema matching prediction with applications to data source discovery and dynamic ensembling Web-scale data integration involves fully automated efforts which lack knowledge of the exact match between data descriptions. In this paper, we introduce schema matching prediction , an assessment mechanism to support schema matchers in the absence of an exact match . Given attribute pair-wise similarity measures, a predictor predicts the success of a matcher in identifying correct correspondences. We present a comprehensive framework in which predictors can be defined, designed, and evaluated. We formally define schema matching evaluation and schema matching prediction using similarity spaces and discuss a set of four desirable properties of predictors, namely correlation, robustness, tunability, and generalization. We present a method for constructing predictors, supporting generalization, and introduce prediction models as means of tuning prediction toward various quality measures. We define the empirical properties of correlation and robustness and provide concrete measures for their evaluation. We illustrate the usefulness of schema matching prediction by presenting three use cases: We propose a method for ranking the relevance of deep Web sources with respect to given user needs. We show how predictors can assist in the design of schema matching systems. Finally, we show how prediction can support dynamic weight setting of matchers in an ensemble, thus improving upon current state-of-the-art weight setting methods. An extensive empirical evaluation shows the usefulness of predictors in these use cases and demonstrates the usefulness of prediction models in increasing the performance of schema matching. The VLDB Journal Springer Journals

Schema matching prediction with applications to data source discovery and dynamic ensembling

Loading next page...
Springer Berlin Heidelberg
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


  • A comparative analysis of methodologies for database schema integration
    Batini, C; Lenzerini, M; Navathe, SB

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial