Scheduling for a processor sharing system with linear slowdown

Scheduling for a processor sharing system with linear slowdown We consider the problem of scheduling arrivals to a congestion system with a finite number of users having identical deterministic demand sizes. The congestion is of the processor sharing type in the sense that all users in the system at any given time are served simultaneously. However, in contrast to classical processor sharing congestion models, the processing slowdown is proportional to the number of users in the system at any time. That is, the rate of service experienced by all users is linearly decreasing with the number of users. For each user there is an ideal departure time (due date). A centralized scheduling goal is then to select arrival times so as to minimize the total penalty due to deviations from ideal times weighted with sojourn times. Each deviation penalty is assumed quadratic, or more generally convex. But due to the dynamics of the system, the scheduling objective function is non-convex. Specifically, the system objective function is a non-smooth piecewise convex function. Nevertheless, we are able to leverage the structure of the problem to derive an algorithm that finds the global optimum in a (large but) finite number of steps, each involving the solution of a constrained convex program. Further, we put forward several heuristics. The first is the traversal of neighbouring constrained convex programming problems, that is guaranteed to reach a local minimum of the centralized problem. This is a form of a “local search”, where we use the problem structure in a novel manner. The second is a one-coordinate “global search”, used in coordinate pivot iteration. We then merge these two heuristics into a unified “local–global” heuristic, and numerically illustrate the effectiveness of this heuristic. Mathematical Methods of Operations Research Springer Journals

Scheduling for a processor sharing system with linear slowdown

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Mathematics; Calculus of Variations and Optimal Control; Optimization; Operations Research/Decision Theory; Business and Management, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial