Scheduled approximation for Personalized PageRank with Utility-based Hub Selection

Scheduled approximation for Personalized PageRank with Utility-based Hub Selection As Personalized PageRank has been widely leveraged for ranking on a graph, the efficient computation of Personalized PageRank Vector (PPV) becomes a prominent issue. In this paper, we propose FastPPV, an approximate PPV computation algorithm that is incremental and accuracy-aware . Our approach hinges on a novel paradigm of scheduled approximation : the computation is partitioned and scheduled for processing in an “organized” way, such that we can gradually improve our PPV estimation in an incremental manner and quantify the accuracy of our approximation at query time. Guided by this principle, we develop an efficient hub-based realization, where we adopt the metric of hub length to partition and schedule random walk tours so that the approximation error reduces exponentially over iterations. In addition, as tours are segmented by hubs, the shared substructures between different tours (around the same hub) can be reused to speed up query processing both within and across iterations. Given the key roles played by the hubs, we further investigate the problem of hub selection. In particular, we develop a conceptual model to select hubs based on the two desirable properties of hubs—sharing and discriminating, and present several different strategies to realize the conceptual model. Finally, we evaluate FastPPV over two real-world graphs, and show that it not only significantly outperforms two state-of-the-art baselines in both online and offline phrases, but also scales well on larger graphs. In particular, we are able to achieve near-constant time online query processing irrespective of graph size. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Scheduled approximation for Personalized PageRank with Utility-based Hub Selection

Loading next page...
1
 
/lp/springer_journal/scheduled-approximation-for-personalized-pagerank-with-utility-based-K7700f7Orw
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-014-0376-8
Publisher site
See Article on Publisher Site

Abstract

As Personalized PageRank has been widely leveraged for ranking on a graph, the efficient computation of Personalized PageRank Vector (PPV) becomes a prominent issue. In this paper, we propose FastPPV, an approximate PPV computation algorithm that is incremental and accuracy-aware . Our approach hinges on a novel paradigm of scheduled approximation : the computation is partitioned and scheduled for processing in an “organized” way, such that we can gradually improve our PPV estimation in an incremental manner and quantify the accuracy of our approximation at query time. Guided by this principle, we develop an efficient hub-based realization, where we adopt the metric of hub length to partition and schedule random walk tours so that the approximation error reduces exponentially over iterations. In addition, as tours are segmented by hubs, the shared substructures between different tours (around the same hub) can be reused to speed up query processing both within and across iterations. Given the key roles played by the hubs, we further investigate the problem of hub selection. In particular, we develop a conceptual model to select hubs based on the two desirable properties of hubs—sharing and discriminating, and present several different strategies to realize the conceptual model. Finally, we evaluate FastPPV over two real-world graphs, and show that it not only significantly outperforms two state-of-the-art baselines in both online and offline phrases, but also scales well on larger graphs. In particular, we are able to achieve near-constant time online query processing irrespective of graph size.

Journal

The VLDB JournalSpringer Journals

Published: Oct 1, 2015

References

  • Index design and query processing for graph conductance search
    Chakrabarti, S; Pathak, A; Gupta, M

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off