Scanning near-field lithography with high precision flexure orientation stage control

Scanning near-field lithography with high precision flexure orientation stage control A new design of an orientation stage for scanning near-field lithography is presented based on flexure hinges. Employing flexure mechanisms in place of rigid-body mechanisms is one of the most promising techniques to efficiently implement high precision motion and avoid problems caused by friction. For near-field scanning lithography with evanescent wave, best resolution can be achieved in contact mode. However, if the mask is fixed on a rigid stage, contact friction will deteriorate the lithography surface. To reduce friction while maintaining good contact between the mask and the substrate, the mask should be held with high lateral stiffness and low torsion stiffness. This design can hold the mask in place during the scanning process and achieve passive alignment. Circular flexure hinges, whose parameters are determined by motion requirements based on Schotborgh’s equation, are used as the basic unit of the stage to achieve passive alignment by compensating motions from elastic deformation. A finite-element analysis is performed to verify this property of the stage. With the aid of this stage, 21 nm resolution is achieved in static near-field lithography and 18 nm line-width in scanning near-field lithography. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics A: Materials Science Processing Springer Journals

Scanning near-field lithography with high precision flexure orientation stage control

Loading next page...
 
/lp/springer_journal/scanning-near-field-lithography-with-high-precision-flexure-yF2zkeCukW
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
ISSN
0947-8396
eISSN
1432-0630
D.O.I.
10.1007/s00339-017-1204-y
Publisher site
See Article on Publisher Site

Abstract

A new design of an orientation stage for scanning near-field lithography is presented based on flexure hinges. Employing flexure mechanisms in place of rigid-body mechanisms is one of the most promising techniques to efficiently implement high precision motion and avoid problems caused by friction. For near-field scanning lithography with evanescent wave, best resolution can be achieved in contact mode. However, if the mask is fixed on a rigid stage, contact friction will deteriorate the lithography surface. To reduce friction while maintaining good contact between the mask and the substrate, the mask should be held with high lateral stiffness and low torsion stiffness. This design can hold the mask in place during the scanning process and achieve passive alignment. Circular flexure hinges, whose parameters are determined by motion requirements based on Schotborgh’s equation, are used as the basic unit of the stage to achieve passive alignment by compensating motions from elastic deformation. A finite-element analysis is performed to verify this property of the stage. With the aid of this stage, 21 nm resolution is achieved in static near-field lithography and 18 nm line-width in scanning near-field lithography.

Journal

Applied Physics A: Materials Science ProcessingSpringer Journals

Published: Aug 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off