Scanning liquid-crystal thermometry and stereo velocimetry for simultaneous three-dimensional measurement of temperature and velocity field in a turbulent Rayleigh-Bérnard convection

Scanning liquid-crystal thermometry and stereo velocimetry for simultaneous three-dimensional... In this paper, we report on an experimental technique for the simultaneous measurement of temperature and three components of velocity in a three-dimensional thermal flow using scanning liquid-crystal thermometry and stereo velocimetry. The temperature is measured by the color image analysis of the liquid-crystal particles suspended in a fluid, while the three velocity components are measured by stereo particle image velocimetry (stereo PIV) with the aid of tracer particles. The measurement is carried out by scanning the light-sheet plane while capturing the sequential color images of the liquid crystals and tracer particles. This measurement allows the reconstruction of the three-dimensional distribution of temperature and full velocity field simultaneously. The present experimental technique is applied to the horizontal fluid layer of a turbulent Rayleigh-Bérnard convection and the three-dimensional structures of thermal plumes are evaluated. The experimental results indicate that the structures of plumes are often correlated with the vertical velocity of the fluid, but they behave randomly in space, influenced by the large-scale turbulence evident in the middle of the fluid layer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Scanning liquid-crystal thermometry and stereo velocimetry for simultaneous three-dimensional measurement of temperature and velocity field in a turbulent Rayleigh-Bérnard convection

Loading next page...
 
/lp/springer_journal/scanning-liquid-crystal-thermometry-and-stereo-velocimetry-for-XdQexiIWm0
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0891-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial