Scaling the effects of surface topography in the secondary atomization resulting from droplet/wall interactions

Scaling the effects of surface topography in the secondary atomization resulting from... The impact of droplets onto micro-structured surfaces has been the focus of numerous recent studies, under the perspective of many different applications. However, much is still to be known about the effects of surface patterning in order to devise realistic physical models to accurately predict interfacial transfer rates. In this context, the present paper addresses the question of how to scale the effects of the surface topography to find adequate parameters, which can be easily obtained a priori. The approach is based on the characterization of the hydrodynamic and thermal behaviors of individual droplets impacting onto smooth and micro-structured heated surfaces, with the objective of quantifying the effects of the modified wettability associated with the topography of the surface. The focus is put on the thermal-induced mechanisms of secondary atomization as these are of particular interest for spray-cooling applications. The analysis suggests that different wetting properties lead to particular characteristics of the thermal-induced atomization, which can be related with the ratio between the roughness amplitude and the fundamental wavelength of the surface topography R a/λR. This hypothesis is consistent with the theoretical prediction of the wetting behavior of the surfaces. The results also show a good correlation between the mean sizes of the secondary droplets generated by thermal-induced atomization and the ratio R a/λR. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Scaling the effects of surface topography in the secondary atomization resulting from droplet/wall interactions

Loading next page...
 
/lp/springer_journal/scaling-the-effects-of-surface-topography-in-the-secondary-atomization-lyVs5tjq6p
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1106-2
Publisher site
See Article on Publisher Site

Abstract

The impact of droplets onto micro-structured surfaces has been the focus of numerous recent studies, under the perspective of many different applications. However, much is still to be known about the effects of surface patterning in order to devise realistic physical models to accurately predict interfacial transfer rates. In this context, the present paper addresses the question of how to scale the effects of the surface topography to find adequate parameters, which can be easily obtained a priori. The approach is based on the characterization of the hydrodynamic and thermal behaviors of individual droplets impacting onto smooth and micro-structured heated surfaces, with the objective of quantifying the effects of the modified wettability associated with the topography of the surface. The focus is put on the thermal-induced mechanisms of secondary atomization as these are of particular interest for spray-cooling applications. The analysis suggests that different wetting properties lead to particular characteristics of the thermal-induced atomization, which can be related with the ratio between the roughness amplitude and the fundamental wavelength of the surface topography R a/λR. This hypothesis is consistent with the theoretical prediction of the wetting behavior of the surfaces. The results also show a good correlation between the mean sizes of the secondary droplets generated by thermal-induced atomization and the ratio R a/λR.

Journal

Experiments in FluidsSpringer Journals

Published: May 3, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off