Scaling limits of random Pólya trees

Scaling limits of random Pólya trees Pólya trees are rooted trees considered up to symmetry. We establish the convergence of large uniform random Pólya trees with arbitrary degree restrictions to Aldous’ Continuum Random Tree with respect to the Gromov–Hausdorff metric. Our proof is short and elementary, and it is based on a novel decomposition: it shows that the global shape of a random Pólya tree is essentially dictated by a large Galton–Watson tree that it contains. We also derive sub-Gaussian tail bounds for both the height and the width, which are optimal up to constant factors in the exponent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Probability Theory and Related Fields Springer Journals

Scaling limits of random Pólya trees

Loading next page...
 
/lp/springer_journal/scaling-limits-of-random-p-lya-trees-2mDKPj8yCc
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Mathematics; Probability Theory and Stochastic Processes; Theoretical, Mathematical and Computational Physics; Quantitative Finance; Mathematical and Computational Biology; Statistics for Business/Economics/Mathematical Finance/Insurance; Operations Research/Decision Theory
ISSN
0178-8051
eISSN
1432-2064
D.O.I.
10.1007/s00440-017-0770-4
Publisher site
See Article on Publisher Site

Abstract

Pólya trees are rooted trees considered up to symmetry. We establish the convergence of large uniform random Pólya trees with arbitrary degree restrictions to Aldous’ Continuum Random Tree with respect to the Gromov–Hausdorff metric. Our proof is short and elementary, and it is based on a novel decomposition: it shows that the global shape of a random Pólya tree is essentially dictated by a large Galton–Watson tree that it contains. We also derive sub-Gaussian tail bounds for both the height and the width, which are optimal up to constant factors in the exponent.

Journal

Probability Theory and Related FieldsSpringer Journals

Published: Mar 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off