Scaling forecasting algorithms using clustered modeling

Scaling forecasting algorithms using clustered modeling Research on forecasting has traditionally focused on building more accurate statistical models for a given time series. The models are mostly applied to limited data due to efficiency and scalability problems. However, many enterprise applications require scalable forecasting on large number of data series. For example, telecommunication companies need to forecast each of their customers’ traffic load to understand their usage behavior and to tailor targeted campaigns. Forecasting models are typically applied on aggregate data to estimate the total traffic volume for revenue estimation and resource planning. However, they cannot be easily applied to each user individually as building accurate models for large number of users would be time consuming. The problem is exacerbated when the forecasting process is continuous and the models need to be updated periodically. This paper addresses the problem of building and updating forecasting models continuously for multiple data series. We propose dynamic clustered modeling for forecasting by utilizing representative models as an analogy to cluster centers. We apply the models to each individual series through iterative nonlinear optimization. We develop two approaches: The Integrated Clustered Modeling integrates clustering and modeling simultaneously, and the Sequential Clustered Modeling applies them sequentially. Our findings indicate that modeling an individual’s behavior using its segment can be more scalable and accurate than the individual model itself. The grouped models avoid overfits and capture common motifs even on noisy data. Experimental results from a telco CRM application show the method is efficient and scalable, and also more accurate than having separate individual models. The VLDB Journal Springer Journals

Scaling forecasting algorithms using clustered modeling

Loading next page...
Springer Berlin Heidelberg
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial