ScaLeKB: scalable learning and inference over large knowledge bases

ScaLeKB: scalable learning and inference over large knowledge bases Recent years have seen a drastic rise in the construction of web knowledge bases (e.g., Freebase, YAGO, DBPedia). These knowledge bases store structured information about real-world people, places, organizations, etc. However, due to the limitations of human knowledge, web corpora, and information extraction algorithms, the knowledge bases are still far from complete. To infer the missing knowledge, we propose the Ontological Pathfinding (OP) algorithm to mine first-order inference rules from these web knowledge bases. The OP algorithm scales up via a series of optimization techniques, including a new parallel-rule-mining algorithm, a pruning strategy to eliminate unsound and inefficient rules before applying them, and a novel partitioning algorithm to break the learning task into smaller independent sub-tasks. Combining these techniques, we develop a first rule mining system that scales to Freebase, the largest public knowledge base with 112 million entities and 388 million facts. We mine 36,625 inference rules in 34 h; no existing system achieves this scale. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

ScaLeKB: scalable learning and inference over large knowledge bases

Loading next page...
 
/lp/springer_journal/scalekb-scalable-learning-and-inference-over-large-knowledge-bases-jjCtPouBpN
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-016-0444-3
Publisher site
See Article on Publisher Site

Abstract

Recent years have seen a drastic rise in the construction of web knowledge bases (e.g., Freebase, YAGO, DBPedia). These knowledge bases store structured information about real-world people, places, organizations, etc. However, due to the limitations of human knowledge, web corpora, and information extraction algorithms, the knowledge bases are still far from complete. To infer the missing knowledge, we propose the Ontological Pathfinding (OP) algorithm to mine first-order inference rules from these web knowledge bases. The OP algorithm scales up via a series of optimization techniques, including a new parallel-rule-mining algorithm, a pruning strategy to eliminate unsound and inefficient rules before applying them, and a novel partitioning algorithm to break the learning task into smaller independent sub-tasks. Combining these techniques, we develop a first rule mining system that scales to Freebase, the largest public knowledge base with 112 million entities and 388 million facts. We mine 36,625 inference rules in 34 h; no existing system achieves this scale.

Journal

The VLDB JournalSpringer Journals

Published: Oct 31, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off