Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve

Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV... A scale-up approach is developed to enhance effective spatial and temporal resolution of PIV measurements. An analysis shows that complete similarity can be maintained for certain unsteady flows and that all types of error in PIV are either reduced or unaffected by scale-up. Implementation and results are described for flow through a mechanical heart valve (MHV), in which high resolution is necessary to advance understanding of the effects of small-scale flow structure on blood cells. With a large-scale model geometry and a low-viscosity model fluid, spatial and temporal resolutions are increased by factors of 5.8 and 118, respectively, yielding the finest resolution to date for MHV flow. Measurements near the downstream tip of a valve leaflet detect eddies as small as 400 μm shed in the leaflet wake. Impulsively started flow exhibits vortex shedding frequencies broadly consistent with the literature on flat-plate and aerofoil wakes, while the physiological unsteady flow waveform promotes 40% higher frequency at peak flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve

Loading next page...
 
/lp/springer_journal/scale-up-of-an-unsteady-flow-field-for-enhanced-spatial-and-temporal-Xb9Cih8Zsd
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Fluid- and Aerodynamics; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-1038-2
Publisher site
See Article on Publisher Site

Abstract

A scale-up approach is developed to enhance effective spatial and temporal resolution of PIV measurements. An analysis shows that complete similarity can be maintained for certain unsteady flows and that all types of error in PIV are either reduced or unaffected by scale-up. Implementation and results are described for flow through a mechanical heart valve (MHV), in which high resolution is necessary to advance understanding of the effects of small-scale flow structure on blood cells. With a large-scale model geometry and a low-viscosity model fluid, spatial and temporal resolutions are increased by factors of 5.8 and 118, respectively, yielding the finest resolution to date for MHV flow. Measurements near the downstream tip of a valve leaflet detect eddies as small as 400 μm shed in the leaflet wake. Impulsively started flow exhibits vortex shedding frequencies broadly consistent with the literature on flat-plate and aerofoil wakes, while the physiological unsteady flow waveform promotes 40% higher frequency at peak flow.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 19, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off