Scale transformations in phase space and stretched states of a harmonic oscillator

Scale transformations in phase space and stretched states of a harmonic oscillator We consider scale transformations (q, p) → (λq, λp) in phase space. They induce transformations of the Husimi functions H(q, p) defined in this space. We consider the Husimi functions for states that are arbitrary superpositions of n-particle states of a harmonic oscillator. We develop a method that allows finding so-called stretched states to which these superpositions transform under such a scale transformation. We study the properties of the stretched states and calculate their density matrices in explicit form. We establish that the density matrix structure can be described using negative binomial distributions. We find expressions for the energy and entropy of stretched states and calculate the means of the number-ofstates operator. We give the form of the Heisenberg and Robertson–Schrödinger uncertainty relations for stretched states. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Theoretical and Mathematical Physics Springer Journals

Scale transformations in phase space and stretched states of a harmonic oscillator

Loading next page...
 
/lp/springer_journal/scale-transformations-in-phase-space-and-stretched-states-of-a-jDaAWOrOzD
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Physics; Theoretical, Mathematical and Computational Physics; Applications of Mathematics
ISSN
0040-5779
eISSN
1573-9333
D.O.I.
10.1134/S0040577917070091
Publisher site
See Article on Publisher Site

Abstract

We consider scale transformations (q, p) → (λq, λp) in phase space. They induce transformations of the Husimi functions H(q, p) defined in this space. We consider the Husimi functions for states that are arbitrary superpositions of n-particle states of a harmonic oscillator. We develop a method that allows finding so-called stretched states to which these superpositions transform under such a scale transformation. We study the properties of the stretched states and calculate their density matrices in explicit form. We establish that the density matrix structure can be described using negative binomial distributions. We find expressions for the energy and entropy of stretched states and calculate the means of the number-ofstates operator. We give the form of the Heisenberg and Robertson–Schrödinger uncertainty relations for stretched states.

Journal

Theoretical and Mathematical PhysicsSpringer Journals

Published: Aug 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off