Scale invariance and longitudinal stability of the Physical Functioning Western Ontario and MacMaster Universities Osteoarthritis Index using the Rasch model

Scale invariance and longitudinal stability of the Physical Functioning Western Ontario and... The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) measures the quality of life of patients with osteoarthritis (OA), and there is a specific scale for the physical functioning dimension, the short version with seven items WOMAC-pf. This study describes the application of the Rasch model to explore scale invariance and response stability of the WOMAC-pf short version across affected joint and over time. A sample of 884 patients with OA, from 15 hospitals in Spain, completed the WOMAC-pf before surgery (baseline) and at 3, 6 and 12 months post-surgery of hip or knee. The invariance by joint was explored through the differential item functioning (DIF) analysis of the Rasch model using baseline data, and time stability (DIF by time) were evaluated in stack data (each participant is represented four times, one by time point). Mean age of the patients was of 69.13 years (SD 10.01), 59.3% of them were women (n = 524), 59.2% had knee OA (n = 523) and 40.8% hip OA (n = 361). Item “putting on socks” showed DIF by joint and time. Fit to the Rasch model using stack data improved when this item was removed. Good reliability for individual use, local independency and unidimensionality of the models were confirmed. WOMAC-pf 7-item short version was invariant over time and joint when item “putting on socks” was removed. Researchers should carefully evaluate this item as it presents problems in scale invariance and stability, which could affect results when comparing data by joint or when computing change scores. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rheumatology International Springer Journals

Scale invariance and longitudinal stability of the Physical Functioning Western Ontario and MacMaster Universities Osteoarthritis Index using the Rasch model

Loading next page...
 
/lp/springer_journal/scale-invariance-and-longitudinal-stability-of-the-physical-E05dZfLd9Y
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Medicine & Public Health; Rheumatology
ISSN
0172-8172
eISSN
1437-160X
D.O.I.
10.1007/s00296-017-3901-4
Publisher site
See Article on Publisher Site

Abstract

The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) measures the quality of life of patients with osteoarthritis (OA), and there is a specific scale for the physical functioning dimension, the short version with seven items WOMAC-pf. This study describes the application of the Rasch model to explore scale invariance and response stability of the WOMAC-pf short version across affected joint and over time. A sample of 884 patients with OA, from 15 hospitals in Spain, completed the WOMAC-pf before surgery (baseline) and at 3, 6 and 12 months post-surgery of hip or knee. The invariance by joint was explored through the differential item functioning (DIF) analysis of the Rasch model using baseline data, and time stability (DIF by time) were evaluated in stack data (each participant is represented four times, one by time point). Mean age of the patients was of 69.13 years (SD 10.01), 59.3% of them were women (n = 524), 59.2% had knee OA (n = 523) and 40.8% hip OA (n = 361). Item “putting on socks” showed DIF by joint and time. Fit to the Rasch model using stack data improved when this item was removed. Good reliability for individual use, local independency and unidimensionality of the models were confirmed. WOMAC-pf 7-item short version was invariant over time and joint when item “putting on socks” was removed. Researchers should carefully evaluate this item as it presents problems in scale invariance and stability, which could affect results when comparing data by joint or when computing change scores.

Journal

Rheumatology InternationalSpringer Journals

Published: Dec 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off