Scalable keyword search on large data streams

Scalable keyword search on large data streams It is widely recognized that the integration of information retrieval ( IR ) and database ( DB ) techniques provides users with a broad range of high quality services. Along this direction, IR -styled m -keyword query processing over a relational database in an rdbms framework has been well studied. It finds all hidden interconnected tuple structures, for example connected trees that contain keywords and are interconnected by sequences of primary/foreign key relationships among tuples. A new challenging issue is how to monitor events that are implicitly interrelated over an open-ended relational data stream for a user-given m -keyword query. Such a relational data stream is a sequence of tuple insertion/deletion operations. The difficulty of the problem is related to the number of costly joins to be processed over time when tuples are inserted and/or deleted. Such cost is mainly affected by three parameters, namely, the number of keywords, the maximum size of interconnected tuple structures, and the complexity of the database schema when it is viewed as a schema graph. In this paper, we propose new approaches. First, we propose a novel algorithm to efficiently determine all the joins that need to be processed for answering an m -keyword query. Second, we propose a new demand-driven approach to process such a query over a high speed relational data stream. We show that we can achieve high efficiency by significantly reducing the number of intermediate results when processing joins over a relational data stream. The proposed new techniques allow us to achieve high scalability in terms of both query plan generation and query plan execution. We conducted extensive experimental studies using synthetic data and real data to simulate a relational data stream. Our approach significantly outperforms existing algorithms. The VLDB Journal Springer Journals

Scalable keyword search on large data streams

Loading next page...
Copyright © 2011 by Springer-Verlag
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial