Scalable dimensioning of optical transport networks for grid excess load handling

Scalable dimensioning of optical transport networks for grid excess load handling Grids consist of the aggregation of numerous dispersed computational and storage resources, able to satisfy even the most demanding computing jobs. An important aspect of Grid deployment is the allocation and activation of installed network capacity, needed to transfer data and jobs to and from remote resources. Due to the data-intensive nature of Grid jobs, it is expected that optical transport networks will play an important role in Grid deployment. As Grids possibly consist of high numbers of resources, and users, solving the network dimensioning problem (i.e. determining the number of wavelength channels per fiber and wavelength granularity required) using straightforward Integer Linear Programs (ILP) does not scale well with increasing number of jobs. Therefore, we propose the use of Divisible Load Theory (DLT) when modeling the OCS (with wavelength translation) dimensioning problem in this context. We compare this approach to both an exact ILP and heuristic (derived from the exact ILP) approach as a function of the job arrival process, network related parameters and the Grid job scheduling strategy on the Grid. Results show the convergence of the DLT-based and the exact ILP approach, which indicates that the DLT-based approach is of practical use in cases where the exact ILP-based problem becomes intractable. We study an excess load scenario and evaluate the network cost for varying wavelength granularity, fiber/wavelength cost models, network topology and traffic demand asymmetry under multiple Grid scheduling strategies. Results indicate the suitability of our DLT-based approach as an Optical Transport Network dimensioning tool to be used by network operators. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Scalable dimensioning of optical transport networks for grid excess load handling

Loading next page...
 
/lp/springer_journal/scalable-dimensioning-of-optical-transport-networks-for-grid-excess-jIjnm60dwy
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-006-0026-1
Publisher site
See Article on Publisher Site

References

  • TransLight: A global-scale LambdaGrid for e-Science
    DeFanti, T.; Laat, C.; Mambretti, J.; Neggers, K.
  • An integrated survey of project scheduling
    Kolisch, R.; Padman, R.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial