Scalable dimensioning of optical transport networks for grid excess load handling

Scalable dimensioning of optical transport networks for grid excess load handling Grids consist of the aggregation of numerous dispersed computational and storage resources, able to satisfy even the most demanding computing jobs. An important aspect of Grid deployment is the allocation and activation of installed network capacity, needed to transfer data and jobs to and from remote resources. Due to the data-intensive nature of Grid jobs, it is expected that optical transport networks will play an important role in Grid deployment. As Grids possibly consist of high numbers of resources, and users, solving the network dimensioning problem (i.e. determining the number of wavelength channels per fiber and wavelength granularity required) using straightforward Integer Linear Programs (ILP) does not scale well with increasing number of jobs. Therefore, we propose the use of Divisible Load Theory (DLT) when modeling the OCS (with wavelength translation) dimensioning problem in this context. We compare this approach to both an exact ILP and heuristic (derived from the exact ILP) approach as a function of the job arrival process, network related parameters and the Grid job scheduling strategy on the Grid. Results show the convergence of the DLT-based and the exact ILP approach, which indicates that the DLT-based approach is of practical use in cases where the exact ILP-based problem becomes intractable. We study an excess load scenario and evaluate the network cost for varying wavelength granularity, fiber/wavelength cost models, network topology and traffic demand asymmetry under multiple Grid scheduling strategies. Results indicate the suitability of our DLT-based approach as an Optical Transport Network dimensioning tool to be used by network operators. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Scalable dimensioning of optical transport networks for grid excess load handling

Loading next page...
 
/lp/springer_journal/scalable-dimensioning-of-optical-transport-networks-for-grid-excess-jIjnm60dwy
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-006-0026-1
Publisher site
See Article on Publisher Site

Abstract

Grids consist of the aggregation of numerous dispersed computational and storage resources, able to satisfy even the most demanding computing jobs. An important aspect of Grid deployment is the allocation and activation of installed network capacity, needed to transfer data and jobs to and from remote resources. Due to the data-intensive nature of Grid jobs, it is expected that optical transport networks will play an important role in Grid deployment. As Grids possibly consist of high numbers of resources, and users, solving the network dimensioning problem (i.e. determining the number of wavelength channels per fiber and wavelength granularity required) using straightforward Integer Linear Programs (ILP) does not scale well with increasing number of jobs. Therefore, we propose the use of Divisible Load Theory (DLT) when modeling the OCS (with wavelength translation) dimensioning problem in this context. We compare this approach to both an exact ILP and heuristic (derived from the exact ILP) approach as a function of the job arrival process, network related parameters and the Grid job scheduling strategy on the Grid. Results show the convergence of the DLT-based and the exact ILP approach, which indicates that the DLT-based approach is of practical use in cases where the exact ILP-based problem becomes intractable. We study an excess load scenario and evaluate the network cost for varying wavelength granularity, fiber/wavelength cost models, network topology and traffic demand asymmetry under multiple Grid scheduling strategies. Results indicate the suitability of our DLT-based approach as an Optical Transport Network dimensioning tool to be used by network operators.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Sep 9, 2006

References

  • TransLight: A global-scale LambdaGrid for e-Science
    DeFanti, T.; Laat, C.; Mambretti, J.; Neggers, K.
  • An integrated survey of project scheduling
    Kolisch, R.; Padman, R.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off