Scalable architecture for quantum information processing with atoms in optical micro-structures

Scalable architecture for quantum information processing with atoms in optical micro-structures We review recent experimental progress towards quantum information processing and quantum simulation using neutral atoms in two-dimensional (2D) arrays of optical microtraps as 2D registers of qubits. We describe a scalable quantum information architecture based on micro-fabricated optical elements, simultaneously targeting the important issues of single-site addressability and scalability. This approach provides flexible and integrable configurations for quantum state storage, manipulation, and retrieval. We present recent experimental results on the initialization and coherent one-qubit rotation of up to 100 individually addressable qubits, the coherent transport of atomic quantum states in a scalable quantum shift register, and discuss the feasibility of two-qubit gates in 2D microtrap arrays. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Scalable architecture for quantum information processing with atoms in optical micro-structures

Loading next page...
 
/lp/springer_journal/scalable-architecture-for-quantum-information-processing-with-atoms-in-Ztzo1MkLU4
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Physics; Computer Science, general; Mathematics, general; Theoretical, Mathematical and Computational Physics; Physics, general
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0297-z
Publisher site
See Article on Publisher Site

Abstract

We review recent experimental progress towards quantum information processing and quantum simulation using neutral atoms in two-dimensional (2D) arrays of optical microtraps as 2D registers of qubits. We describe a scalable quantum information architecture based on micro-fabricated optical elements, simultaneously targeting the important issues of single-site addressability and scalability. This approach provides flexible and integrable configurations for quantum state storage, manipulation, and retrieval. We present recent experimental results on the initialization and coherent one-qubit rotation of up to 100 individually addressable qubits, the coherent transport of atomic quantum states in a scalable quantum shift register, and discuss the feasibility of two-qubit gates in 2D microtrap arrays.

Journal

Quantum Information ProcessingSpringer Journals

Published: Sep 15, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off