Scalable and dynamically balanced shared-everything OLTP with physiological partitioning

Scalable and dynamically balanced shared-everything OLTP with physiological partitioning Scaling the performance of shared-everything transaction processing systems to highly parallel multicore hardware remains a challenge for database system designers. Recent proposals alleviate locking and logging bottlenecks in the system, leaving page latching as the next potential problem. To tackle the page latching problem, we propose physiological partitioning (PLP). PLP applies logical-only partitioning, maintaining the desired properties of sharedeverything designs, and introduces a multi-rooted B+Tree index structure (MRBTree) that enables the partitioning of the accesses at the physical page level. Logical partitioning and MRBTrees together ensure that all accesses to a given index page come from a single thread and, hence, can be entirely latch free; an extended design makes heap page accesses thread private as well. Moreover, MRBTrees offer an infrastructure for easy repartitioning and allow us to have a lightweight dynamic load balancing mechanism (DLB) on top of PLP. Profiling a PLP prototype running on different multicore machines shows that it acquires 85 and 68%fewer contentious critical sections, respectively, than an optimized conventional design and one based on logical-only partitioning. PLP also improves performance up to almost 50 % over the existing systems, while DLB enhances the system with rapid and robust behavior in both detecting and handling load imbalances. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Scalable and dynamically balanced shared-everything OLTP with physiological partitioning

Loading next page...
 
/lp/springer_journal/scalable-and-dynamically-balanced-shared-everything-oltp-with-CJikK78gbo
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0278-6
Publisher site
See Article on Publisher Site

Abstract

Scaling the performance of shared-everything transaction processing systems to highly parallel multicore hardware remains a challenge for database system designers. Recent proposals alleviate locking and logging bottlenecks in the system, leaving page latching as the next potential problem. To tackle the page latching problem, we propose physiological partitioning (PLP). PLP applies logical-only partitioning, maintaining the desired properties of sharedeverything designs, and introduces a multi-rooted B+Tree index structure (MRBTree) that enables the partitioning of the accesses at the physical page level. Logical partitioning and MRBTrees together ensure that all accesses to a given index page come from a single thread and, hence, can be entirely latch free; an extended design makes heap page accesses thread private as well. Moreover, MRBTrees offer an infrastructure for easy repartitioning and allow us to have a lightweight dynamic load balancing mechanism (DLB) on top of PLP. Profiling a PLP prototype running on different multicore machines shows that it acquires 85 and 68%fewer contentious critical sections, respectively, than an optimized conventional design and one based on logical-only partitioning. PLP also improves performance up to almost 50 % over the existing systems, while DLB enhances the system with rapid and robust behavior in both detecting and handling load imbalances.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off