Scalable and dynamically balanced shared-everything OLTP with physiological partitioning

Scalable and dynamically balanced shared-everything OLTP with physiological partitioning Scaling the performance of shared-everything transaction processing systems to highly parallel multicore hardware remains a challenge for database system designers. Recent proposals alleviate locking and logging bottlenecks in the system, leaving page latching as the next potential problem. To tackle the page latching problem, we propose physiological partitioning (PLP). PLP applies logical-only partitioning, maintaining the desired properties of sharedeverything designs, and introduces a multi-rooted B+Tree index structure (MRBTree) that enables the partitioning of the accesses at the physical page level. Logical partitioning and MRBTrees together ensure that all accesses to a given index page come from a single thread and, hence, can be entirely latch free; an extended design makes heap page accesses thread private as well. Moreover, MRBTrees offer an infrastructure for easy repartitioning and allow us to have a lightweight dynamic load balancing mechanism (DLB) on top of PLP. Profiling a PLP prototype running on different multicore machines shows that it acquires 85 and 68%fewer contentious critical sections, respectively, than an optimized conventional design and one based on logical-only partitioning. PLP also improves performance up to almost 50 % over the existing systems, while DLB enhances the system with rapid and robust behavior in both detecting and handling load imbalances. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Scalable and dynamically balanced shared-everything OLTP with physiological partitioning

Loading next page...
 
/lp/springer_journal/scalable-and-dynamically-balanced-shared-everything-oltp-with-CJikK78gbo
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0278-6
Publisher site
See Article on Publisher Site

Abstract

Scaling the performance of shared-everything transaction processing systems to highly parallel multicore hardware remains a challenge for database system designers. Recent proposals alleviate locking and logging bottlenecks in the system, leaving page latching as the next potential problem. To tackle the page latching problem, we propose physiological partitioning (PLP). PLP applies logical-only partitioning, maintaining the desired properties of sharedeverything designs, and introduces a multi-rooted B+Tree index structure (MRBTree) that enables the partitioning of the accesses at the physical page level. Logical partitioning and MRBTrees together ensure that all accesses to a given index page come from a single thread and, hence, can be entirely latch free; an extended design makes heap page accesses thread private as well. Moreover, MRBTrees offer an infrastructure for easy repartitioning and allow us to have a lightweight dynamic load balancing mechanism (DLB) on top of PLP. Profiling a PLP prototype running on different multicore machines shows that it acquires 85 and 68%fewer contentious critical sections, respectively, than an optimized conventional design and one based on logical-only partitioning. PLP also improves performance up to almost 50 % over the existing systems, while DLB enhances the system with rapid and robust behavior in both detecting and handling load imbalances.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off