Scalability of write-ahead logging on multicore and multisocket hardware

Scalability of write-ahead logging on multicore and multisocket hardware The shift to multi-core and multi-socket hardware brings new challenges to database systems, as the software parallelism determines performance. Even though database systems traditionally accommodate simultaneous requests, a multitude of synchronization barriers serialize execution. Write-ahead logging is a fundamental, omnipresent component in ARIES-style concurrency and recovery, and one of the most important yet-to-be addressed potential bottlenecks, especially in OLTP workloads making frequent small changes to data. In this paper, we identify four logging-related impediments to database system scalability. Each issue challenges different level in the software architecture: (a) the high volume of small-sized I/O requests may saturate the disk, (b) transactions hold locks while waiting for the log flush, (c) extensive context switching overwhelms the OS scheduler with threads executing log I/Os, and (d) contention appears as transactions serialize accesses to in-memory log data structures. We demonstrate these problems and address them with techniques that, when combined, comprise a holistic, scalable approach to logging. Our solution achieves a 20–69% speedup over a modern database system when running log-intensive workloads, such as the TPC-B and TATP benchmarks, in a single-socket multiprocessor server. Moreover, it achieves log insert throughput over 2.2 GB/s for small log records on the single-socket server, roughly 20 times higher than the traditional way of accessing the log using a single mutex. Furthermore, we investigate techniques on scaling the performance of logging to multi-socket servers. We present a set of optimizations which partly ameliorate the latency penalty that comes with multi-socket hardware, and then we investigate the feasibility of applying a distributed log buffer design at the socket level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Scalability of write-ahead logging on multicore and multisocket hardware

Loading next page...
 
/lp/springer_journal/scalability-of-write-ahead-logging-on-multicore-and-multisocket-AjvI3aJjDK
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-011-0260-8
Publisher site
See Article on Publisher Site

Abstract

The shift to multi-core and multi-socket hardware brings new challenges to database systems, as the software parallelism determines performance. Even though database systems traditionally accommodate simultaneous requests, a multitude of synchronization barriers serialize execution. Write-ahead logging is a fundamental, omnipresent component in ARIES-style concurrency and recovery, and one of the most important yet-to-be addressed potential bottlenecks, especially in OLTP workloads making frequent small changes to data. In this paper, we identify four logging-related impediments to database system scalability. Each issue challenges different level in the software architecture: (a) the high volume of small-sized I/O requests may saturate the disk, (b) transactions hold locks while waiting for the log flush, (c) extensive context switching overwhelms the OS scheduler with threads executing log I/Os, and (d) contention appears as transactions serialize accesses to in-memory log data structures. We demonstrate these problems and address them with techniques that, when combined, comprise a holistic, scalable approach to logging. Our solution achieves a 20–69% speedup over a modern database system when running log-intensive workloads, such as the TPC-B and TATP benchmarks, in a single-socket multiprocessor server. Moreover, it achieves log insert throughput over 2.2 GB/s for small log records on the single-socket server, roughly 20 times higher than the traditional way of accessing the log using a single mutex. Furthermore, we investigate techniques on scaling the performance of logging to multi-socket servers. We present a set of optimizations which partly ameliorate the latency penalty that comes with multi-socket hardware, and then we investigate the feasibility of applying a distributed log buffer design at the socket level.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2012

References

  • Time, clocks, and the ordering of events in a distributed system
    Lamport, L.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off