Sand-supported bio-adsorbent column of activated carbon for removal of coliform bacteria and Escherichia coli from water

Sand-supported bio-adsorbent column of activated carbon for removal of coliform bacteria and... New bio-adsorbent carbon materials were synthesized from the leaves and veins of Mucuna pruriens and Manihot esculenta plants, which are locally available in abundance. The synthesized carbons were activated using 0.01N HNO3. Surface area of the activated carbons from M. pruriens and M. esculenta plants was found to be quite high, i.e., 918 and 865 m2/g, respectively. Scanning electron microscopy analysis of the carbons reflects complex disorganized surface structures of different open pore sizes, shapes and dimensions. These properties of the newly synthesized activated carbons led to the development of a sand-supported carbon column, for its possible use in the removal of coliform bacteria and Escherichia coli (E. Coli) from raw water samples. The removal percentage of E. coli was found to be 100% with both the types of carbon adsorbents, as confirmed from the McCardy most probable number table. Similarly, the removal percentage of coliform bacteria was found to be 99 and 98.7% by M. pruriens and M. esculenta carbon columns, respectively. These activated carbons synthesized from locally available plants possess the characteristics of good low-cost adsorbents which can be easily used for the removal of bacteria from water by adsorption method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Environmental Science and Technology Springer Journals

Sand-supported bio-adsorbent column of activated carbon for removal of coliform bacteria and Escherichia coli from water

Loading next page...
 
/lp/springer_journal/sand-supported-bio-adsorbent-column-of-activated-carbon-for-removal-of-IJa6RgxhXu
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Islamic Azad University (IAU)
Subject
Environment; Environment, general; Environmental Science and Engineering; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Soil Science & Conservation; Ecotoxicology
ISSN
1735-1472
eISSN
1735-2630
D.O.I.
10.1007/s13762-017-1274-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial