Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently

Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium... In the indica rice (Oryza sativa L.) a cDNA was characterized that encoded OsAKT1 homologous to inward-rectifying potassium channels of the AKT/KAT subfamily. Transcript analysis located OsAKT1 predominantly in roots with low abundance in leaves. Cell-specificity of OsAKT expression was analyzed by in situ hybridizations. In roots, strongest signals were localized to the epidermis and the endodermis, whereas lower transcript levels were detected in cells of the vasculature and the cortex. In leaves, expression was detected in xylem parenchyma, phloem, and mesophyll cells. Transcriptional regulation and cell specificity of OsAKT1 during salt stress was compared in rice lines showing different salinity tolerance. In the salt-tolerant, sodium-excluding varieties Pokkali and BK, OsAKT1 transcripts disappeared from the exodermis in plants treated with 150 mM NaCl for 48 h but OsAKT1 transcription was not repressed in these cells in the salt-sensitive, sodium-accumulating variety IR29. Significantly, all lines were able to maintain potassium levels under sodium stress conditions, while sodium concentrations in the leaves of IR29 increased 5–10-fold relative to the sodium concentration in BK or Pokkali. The divergent, line-dependent and salt-dependent, regulation of this channel does not significantly affect potassium homeostasis under salinity stress. Rather, repression in Pokkali/BK and lack of repression in IR29 correlate with the overall tolerance character of these lines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently

Loading next page...
 
/lp/springer_journal/salinity-stress-tolerant-and-sensitive-rice-oryza-sativa-l-regulate-kyBPw7xt2z
Publisher
Springer Journals
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1020763218045
Publisher site
See Article on Publisher Site

Abstract

In the indica rice (Oryza sativa L.) a cDNA was characterized that encoded OsAKT1 homologous to inward-rectifying potassium channels of the AKT/KAT subfamily. Transcript analysis located OsAKT1 predominantly in roots with low abundance in leaves. Cell-specificity of OsAKT expression was analyzed by in situ hybridizations. In roots, strongest signals were localized to the epidermis and the endodermis, whereas lower transcript levels were detected in cells of the vasculature and the cortex. In leaves, expression was detected in xylem parenchyma, phloem, and mesophyll cells. Transcriptional regulation and cell specificity of OsAKT1 during salt stress was compared in rice lines showing different salinity tolerance. In the salt-tolerant, sodium-excluding varieties Pokkali and BK, OsAKT1 transcripts disappeared from the exodermis in plants treated with 150 mM NaCl for 48 h but OsAKT1 transcription was not repressed in these cells in the salt-sensitive, sodium-accumulating variety IR29. Significantly, all lines were able to maintain potassium levels under sodium stress conditions, while sodium concentrations in the leaves of IR29 increased 5–10-fold relative to the sodium concentration in BK or Pokkali. The divergent, line-dependent and salt-dependent, regulation of this channel does not significantly affect potassium homeostasis under salinity stress. Rather, repression in Pokkali/BK and lack of repression in IR29 correlate with the overall tolerance character of these lines.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off