Access the full text.
Sign up today, get DeepDyve free for 14 days.
The present study was undertaken to examine the salinity stress-induced physiological and biochemical alterations in the cyanobacterium Synechococcus sp. PCC 7942. Cyanobacterial cultures supplemented with different concentrations of NaCl were evaluated for growth, carbohydrate, total lipid, ROS generation, and stress biomarkers to evaluate the ROS-mediated lipid production in Synechococcus 7942. Salt concentration of 500 mM induced a five- and threefold increase in the production of carbohydrates and lipids, respectively. The fatty acids composition in terms of total quantity and oleic acid content of the investigated species was also improved as the salinity level increased from 0 to 500 mM NaCl. The data showed maximum MUFA production at 10 mM NaCl with dominance of palmitoleic acid (88.3%) and oleic acid (0.31%), whereas PUFA was found to be maximally produced at 250 mM NaCl with dominance of linoleic acid. Salt stress enhanced the accumulation of carbohydrate and total lipids and antioxidative enzymes, and modulates the fatty acids and hydrocarbon composition of cyanobacterium. Production of fatty acid and hydrocarbon under saline conditions indicates that salinity can be used as a factor to modulate the biochemical pathways of cyanobacteria toward efficient biofuel production.
International Journal of Environmental Science and Technology – Springer Journals
Published: May 31, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.