Saliency detection using quaternionic distance based weber local descriptor and level priors

Saliency detection using quaternionic distance based weber local descriptor and level priors In this paper, a novel and efficient framework by exploiting Quaternionic Distance Based Weber Local Descriptor (QDWLD) and object cues is proposed for image saliency detection. In contrast to the existing saliency detection models, the advantage of the proposed approach is that it can combine quaternion number system and object cues simultaneously, which is independent of image contents and scenes. Firstly, QDWLD, which was initially designed for detecting outliers in color images, is used to represent the directional cues in an image. Meanwhile, two low-level priors, namely the Convex-Hull-Based center and color contrast cue of the image, are utilized and fused as an object-level cue. Finally, by combining QDWLD with object cues, a reliable saliency map of the image can be computed and estimated. Experimental results, based on two widely used and openly available database, show that the proposed method is able to produce reliable and promising salient maps/estimations, compared to other state-of-the-art saliency-detection models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Saliency detection using quaternionic distance based weber local descriptor and level priors

Loading next page...
 
/lp/springer_journal/saliency-detection-using-quaternionic-distance-based-weber-local-OZyZcRE1Dk
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-5032-z
Publisher site
See Article on Publisher Site

Abstract

In this paper, a novel and efficient framework by exploiting Quaternionic Distance Based Weber Local Descriptor (QDWLD) and object cues is proposed for image saliency detection. In contrast to the existing saliency detection models, the advantage of the proposed approach is that it can combine quaternion number system and object cues simultaneously, which is independent of image contents and scenes. Firstly, QDWLD, which was initially designed for detecting outliers in color images, is used to represent the directional cues in an image. Meanwhile, two low-level priors, namely the Convex-Hull-Based center and color contrast cue of the image, are utilized and fused as an object-level cue. Finally, by combining QDWLD with object cues, a reliable saliency map of the image can be computed and estimated. Experimental results, based on two widely used and openly available database, show that the proposed method is able to produce reliable and promising salient maps/estimations, compared to other state-of-the-art saliency-detection models.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Jul 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off