Salicylic acid-inducible Arabidopsis CK2-like activity phosphorylates TGA2

Salicylic acid-inducible Arabidopsis CK2-like activity phosphorylates TGA2 We demonstrate that TGA2, TGA5 and TGA6, and TGA3 to a lesser extent, are phosphorylated by an activity in rabbit reticulocytes. Using deletion and point mutagenesis of TGA2, three amino acid (aa) residues, 11 Ser, 12 Thr and 16 Thr, were found to be critical for efficient phosphorylation by a kinase(s) in rabbit reticulocytes. These three residues also were important for phosphorylation by recombinant human Casein Kinase II (CK2) and by a CK2-like kinase in Arabidopsis leaf extracts. Salicylic acid (SA) treatment enhanced the phosphorylation of recombinant TGA2 in vitro; it also enhanced phosphorylation of a TGA2-GFP fusion protein in vivo. By contrast, in vivo phosphorylation of a TGA2-A-GFP fusion protein, in which the 11 Ser, 12 Thr and 16 Thr residues were mutated to non-phosphorylable alanine, was only poorly if at all stimulated by SA treatment. Mutation of the putative CK2 phosphorylation motif did not affect nuclear localization of TGA2. However, the DNA binding activity of TGA2 was reduced by CK2 treatment, whereas that of TGA2-A was unaffected; TGA2’s DNA binding activity after incubation in a rabbit reticulocyte lysate also was substantially lower than that of comparably treated TGA2-A. Taken together, these results suggest that phosphorylation at the putative CK2 phosphorylation site negatively regulates the DNA binding activity of TGA2. Analysis of transgenic Arabidopsis overexpressing TGA2-GFP or TGA2-A-GFP, in the absence of SA treatment, revealed that they accumulated similarly elevated levels of PR-1 gene transcripts. Possible reasons why mutations in the putative CK2 phosphorylation site had little effect on PR-1 induction by TGA2 are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Salicylic acid-inducible Arabidopsis CK2-like activity phosphorylates TGA2

Loading next page...
 
/lp/springer_journal/salicylic-acid-inducible-arabidopsis-ck2-like-activity-phosphorylates-EAzsPQkbXf
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-0409-1
Publisher site
See Article on Publisher Site

Abstract

We demonstrate that TGA2, TGA5 and TGA6, and TGA3 to a lesser extent, are phosphorylated by an activity in rabbit reticulocytes. Using deletion and point mutagenesis of TGA2, three amino acid (aa) residues, 11 Ser, 12 Thr and 16 Thr, were found to be critical for efficient phosphorylation by a kinase(s) in rabbit reticulocytes. These three residues also were important for phosphorylation by recombinant human Casein Kinase II (CK2) and by a CK2-like kinase in Arabidopsis leaf extracts. Salicylic acid (SA) treatment enhanced the phosphorylation of recombinant TGA2 in vitro; it also enhanced phosphorylation of a TGA2-GFP fusion protein in vivo. By contrast, in vivo phosphorylation of a TGA2-A-GFP fusion protein, in which the 11 Ser, 12 Thr and 16 Thr residues were mutated to non-phosphorylable alanine, was only poorly if at all stimulated by SA treatment. Mutation of the putative CK2 phosphorylation motif did not affect nuclear localization of TGA2. However, the DNA binding activity of TGA2 was reduced by CK2 treatment, whereas that of TGA2-A was unaffected; TGA2’s DNA binding activity after incubation in a rabbit reticulocyte lysate also was substantially lower than that of comparably treated TGA2-A. Taken together, these results suggest that phosphorylation at the putative CK2 phosphorylation site negatively regulates the DNA binding activity of TGA2. Analysis of transgenic Arabidopsis overexpressing TGA2-GFP or TGA2-A-GFP, in the absence of SA treatment, revealed that they accumulated similarly elevated levels of PR-1 gene transcripts. Possible reasons why mutations in the putative CK2 phosphorylation site had little effect on PR-1 induction by TGA2 are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 11, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off