Salicylic acid differentially affects suspension cell cultures of Lotus japonicus and one of its non-symbiotic mutants

Salicylic acid differentially affects suspension cell cultures of Lotus japonicus and one of its... Salicylic acid (SA) is known to play an important role in the interaction between plant and micro-organisms, both symbiotic and pathogen. In particular, high levels of SA block nodule formation and mycorrhizal colonization in plants. A mutant of Lotus japonicus, named Ljsym4-2, was characterized as unable to establish positive interactions with Rhizobium and fungi (NOD−, MYC−); in particular, it does not recognize signal molecules released by symbiotic micro-organisms so that eventually, epidermal cells undergo PCD at the contact area. We performed a detailed characterization of wild-type and Ljsym4-2 cultured cells by taking into account several parameters characterizing cell responses to SA, a molecule strongly involved in defense signaling pathways. In the presence of 0.5 mM SA, Ljsym4-2 suspension-cultured cells reduce their growth and eventually die, whereas in order to induce the same effects in wt suspension cells, SA concentration must be raised to 1.5 mM. An early and short production of nitric oxide (NO) and reactive oxygen species (ROS) was detected in wt-treated cells. In contrast, a continuous production of NO and a double-peak ROS response, similar to that reported after a pathogenic attack, was observed in the mutant Ljsym4-2 cells. At the molecular level, a constitutive higher level of a SA-inducible pathogenesis related gene was observed. The analysis in planta revealed a strong induction of the LjPR1 gene in the Ljsym4-2 mutant inoculated with Mesorhizobium loti. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Salicylic acid differentially affects suspension cell cultures of Lotus japonicus and one of its non-symbiotic mutants

Loading next page...
 
/lp/springer_journal/salicylic-acid-differentially-affects-suspension-cell-cultures-of-0IPh7tLVB3
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9585-8
Publisher site
See Article on Publisher Site

Abstract

Salicylic acid (SA) is known to play an important role in the interaction between plant and micro-organisms, both symbiotic and pathogen. In particular, high levels of SA block nodule formation and mycorrhizal colonization in plants. A mutant of Lotus japonicus, named Ljsym4-2, was characterized as unable to establish positive interactions with Rhizobium and fungi (NOD−, MYC−); in particular, it does not recognize signal molecules released by symbiotic micro-organisms so that eventually, epidermal cells undergo PCD at the contact area. We performed a detailed characterization of wild-type and Ljsym4-2 cultured cells by taking into account several parameters characterizing cell responses to SA, a molecule strongly involved in defense signaling pathways. In the presence of 0.5 mM SA, Ljsym4-2 suspension-cultured cells reduce their growth and eventually die, whereas in order to induce the same effects in wt suspension cells, SA concentration must be raised to 1.5 mM. An early and short production of nitric oxide (NO) and reactive oxygen species (ROS) was detected in wt-treated cells. In contrast, a continuous production of NO and a double-peak ROS response, similar to that reported after a pathogenic attack, was observed in the mutant Ljsym4-2 cells. At the molecular level, a constitutive higher level of a SA-inducible pathogenesis related gene was observed. The analysis in planta revealed a strong induction of the LjPR1 gene in the Ljsym4-2 mutant inoculated with Mesorhizobium loti.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 10, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off