Safe binary particle swam algorithm for an enhanced unsupervised label refinement in automatic face annotation

Safe binary particle swam algorithm for an enhanced unsupervised label refinement in automatic... Mining web facial images on the internet has become as a profitable and important paradigm towards auto face annotation technique. The unsupervised label refinement (ULR) is an effective method that can fix weakly labeled facial images data which are collected from the internet and included some images with wrong label. In order to improve the correction accuracy of ULR, particle swarm optimization (PSO) and binary particle swarm optimization (BPSO) are used for solving binary constraint optimization task in this study. A novel method named safe binary particle swam optimization (SBPSO) is also proposed to improve BPSO which has the probability over range problem for using the ULR. In addition, SBPSO is also employed for an enhanced ULR (EULR) objective function which is created by modifying the original formula of ULR to improve the accuracy of labeled facial image. An experimental database is queried from IMDb website which collected the actors who were bored in 1950 to 1990. Some error flags are randomly added in the database for the correction tests by different methods. The results showed that the SBPSO Algorithm for the EULR in automatic face annotation have the better label correction rate and convergence effect. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Safe binary particle swam algorithm for an enhanced unsupervised label refinement in automatic face annotation

Loading next page...
 
/lp/springer_journal/safe-binary-particle-swam-algorithm-for-an-enhanced-unsupervised-label-TGkpglthz7
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-016-4058-y
Publisher site
See Article on Publisher Site

Abstract

Mining web facial images on the internet has become as a profitable and important paradigm towards auto face annotation technique. The unsupervised label refinement (ULR) is an effective method that can fix weakly labeled facial images data which are collected from the internet and included some images with wrong label. In order to improve the correction accuracy of ULR, particle swarm optimization (PSO) and binary particle swarm optimization (BPSO) are used for solving binary constraint optimization task in this study. A novel method named safe binary particle swam optimization (SBPSO) is also proposed to improve BPSO which has the probability over range problem for using the ULR. In addition, SBPSO is also employed for an enhanced ULR (EULR) objective function which is created by modifying the original formula of ULR to improve the accuracy of labeled facial image. An experimental database is queried from IMDb website which collected the actors who were bored in 1950 to 1990. Some error flags are randomly added in the database for the correction tests by different methods. The results showed that the SBPSO Algorithm for the EULR in automatic face annotation have the better label correction rate and convergence effect.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Oct 28, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off