S1 SINE retroposons are methylated at symmetrical and non- symmetrical positions in Brassica napus: identification of a preferred target site for asymmetrical methylation

S1 SINE retroposons are methylated at symmetrical and non- symmetrical positions in Brassica... DNA methylation has been often proposed to operate as a genome defence system against parasitic mobile elements. To test this possibility, the methylation status of a class of plant mobile elements, the S1Bn SINEs, was analysed in detail using the bisulfite modification method. We observed that S1Bn SINE retroposons are methylated at symmetrical and asymmetrical positions. Methylated cytosines are not limited to transcriptionally important regions but are well distributed along the sequence. S1Bn SINE retroposons are two-fold more methylated than the average methylation level of the Brassica napus nuclear DNA. By in situ hybridization, we showed that this high level of methylation does not result from the association of S1Bn elements to genomic regions known to be highly methylated suggesting that S1Bn elements were specifically methylated. A detailed analysis of the methylation context showed that S1Bn cytosines in symmetrical CpG and CpNpG sites are methylated at a level of 87% and 44% respectively. We observed that 5.3% of S1Bn cytosines in non- symmetrical positions were also methylated. Of this asymmetrical methylation, 57% occurred at a precise motif (Cp(A/T)pA) that only represented 12% of the asymmetrical sites in S1Bn sequences suggesting that it represents a preferred asymmetrical methylation site. This motif is methylated in S1Bnelements at only half the level observed for the Cp(A/T)pG sites. We show that non-S1Bn CpTpA sites can also be methylated in DNA from B. napus and from other plant species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

S1 SINE retroposons are methylated at symmetrical and non- symmetrical positions in Brassica napus: identification of a preferred target site for asymmetrical methylation

Loading next page...
 
/lp/springer_journal/s1-sine-retroposons-are-methylated-at-symmetrical-and-non-symmetrical-aZ47KcUBlM
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006108325504
Publisher site
See Article on Publisher Site

Abstract

DNA methylation has been often proposed to operate as a genome defence system against parasitic mobile elements. To test this possibility, the methylation status of a class of plant mobile elements, the S1Bn SINEs, was analysed in detail using the bisulfite modification method. We observed that S1Bn SINE retroposons are methylated at symmetrical and asymmetrical positions. Methylated cytosines are not limited to transcriptionally important regions but are well distributed along the sequence. S1Bn SINE retroposons are two-fold more methylated than the average methylation level of the Brassica napus nuclear DNA. By in situ hybridization, we showed that this high level of methylation does not result from the association of S1Bn elements to genomic regions known to be highly methylated suggesting that S1Bn elements were specifically methylated. A detailed analysis of the methylation context showed that S1Bn cytosines in symmetrical CpG and CpNpG sites are methylated at a level of 87% and 44% respectively. We observed that 5.3% of S1Bn cytosines in non- symmetrical positions were also methylated. Of this asymmetrical methylation, 57% occurred at a precise motif (Cp(A/T)pA) that only represented 12% of the asymmetrical sites in S1Bn sequences suggesting that it represents a preferred asymmetrical methylation site. This motif is methylated in S1Bnelements at only half the level observed for the Cp(A/T)pG sites. We show that non-S1Bn CpTpA sites can also be methylated in DNA from B. napus and from other plant species.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off