S-PIV comparative assessment: image dewarping+misalignment correction and pinhole+geometric back projection

S-PIV comparative assessment: image dewarping+misalignment correction and pinhole+geometric back... This study describes the comparative analysis of two stereoscopic particle image velocimetry (S-PIV) techniques. Emphasis is given to the accuracy of the calibration procedure. Both techniques are related to the angular displacement concept. The first method is based on the pinhole model and is taken as a reference. The second method is based on two steps: the cross-correlation of a calibration pattern to obtain the image’s dewarping function; and the cross-correlation of experimental images to evaluate and correct for the misalignment between the calibration and measurement planes. The methods’ accuracy is compared on the basis of experimental data from a translation–rotation stage, which allows to simulate uniform displacements and misalignments in terms of offset and rotation. The simulation shows that the measurement accuracy is highly sensitive to relative misalignment between the target and measurement planes. A misalignment correction procedure taking into account the residual disparity between the dewarped images is proposed, compensating for most of the error with an overall less sensitive method to the misalignment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

S-PIV comparative assessment: image dewarping+misalignment correction and pinhole+geometric back projection

Loading next page...
 
/lp/springer_journal/s-piv-comparative-assessment-image-dewarping-misalignment-correction-kGFjlq4Epk
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-1000-x
Publisher site
See Article on Publisher Site

Abstract

This study describes the comparative analysis of two stereoscopic particle image velocimetry (S-PIV) techniques. Emphasis is given to the accuracy of the calibration procedure. Both techniques are related to the angular displacement concept. The first method is based on the pinhole model and is taken as a reference. The second method is based on two steps: the cross-correlation of a calibration pattern to obtain the image’s dewarping function; and the cross-correlation of experimental images to evaluate and correct for the misalignment between the calibration and measurement planes. The methods’ accuracy is compared on the basis of experimental data from a translation–rotation stage, which allows to simulate uniform displacements and misalignments in terms of offset and rotation. The simulation shows that the measurement accuracy is highly sensitive to relative misalignment between the target and measurement planes. A misalignment correction procedure taking into account the residual disparity between the dewarped images is proposed, compensating for most of the error with an overall less sensitive method to the misalignment.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 14, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off