Runners and fighters: clutch effects and body size drive innate antipredator behaviour in hatchling lizards

Runners and fighters: clutch effects and body size drive innate antipredator behaviour in... Innate antipredator responses are integral for survival in many species, particularly those which lack parental care. Antipredator responses include both active (fight or flight) and passive behaviours (immobility). As the success of antipredator responses directly relates to survival and fitness, investigating the drivers that explain variance in these traits is key to understanding how predation shapes the instinctive behaviour of animals. We quantified innate antipredator behaviour of hatchling Australian water dragons (Intellagama lesueurii) immediately after hatching using a model snake to simulate a series of attacks, and scored their behaviour using a fight or flight index. Then we explored which factors were related to dragon antipredator behaviour, such as habitat disturbance, origin population, morphology, and parental genetic effects and phenotype (clutch effects). We developed multiple hypotheses and used model selection to determine which factors drive variation in hatchling antipredator behaviour. Clutch effects explained a significant proportion of variation in innate antipredator responses, suggesting a heritable component. We also found an effect of body size on innate antipredator behaviour: larger hatchlings were more prone to flight behaviour (e.g. short-distance runs and long-distance sprinting), while smaller individuals were more prone to standing their ground and being aggressive (e.g. throat puffing, mouth http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Behavioral Ecology and Sociobiology Springer Journals

Runners and fighters: clutch effects and body size drive innate antipredator behaviour in hatchling lizards

Loading next page...
 
/lp/springer_journal/runners-and-fighters-clutch-effects-and-body-size-drive-innate-TtVCubfr0M
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Behavioral Sciences; Zoology; Animal Ecology
ISSN
0340-5443
eISSN
1432-0762
D.O.I.
10.1007/s00265-018-2505-7
Publisher site
See Article on Publisher Site

Abstract

Innate antipredator responses are integral for survival in many species, particularly those which lack parental care. Antipredator responses include both active (fight or flight) and passive behaviours (immobility). As the success of antipredator responses directly relates to survival and fitness, investigating the drivers that explain variance in these traits is key to understanding how predation shapes the instinctive behaviour of animals. We quantified innate antipredator behaviour of hatchling Australian water dragons (Intellagama lesueurii) immediately after hatching using a model snake to simulate a series of attacks, and scored their behaviour using a fight or flight index. Then we explored which factors were related to dragon antipredator behaviour, such as habitat disturbance, origin population, morphology, and parental genetic effects and phenotype (clutch effects). We developed multiple hypotheses and used model selection to determine which factors drive variation in hatchling antipredator behaviour. Clutch effects explained a significant proportion of variation in innate antipredator responses, suggesting a heritable component. We also found an effect of body size on innate antipredator behaviour: larger hatchlings were more prone to flight behaviour (e.g. short-distance runs and long-distance sprinting), while smaller individuals were more prone to standing their ground and being aggressive (e.g. throat puffing, mouth

Journal

Behavioral Ecology and SociobiologySpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off