Run-Up of Long Waves in Piecewise Sloping U-Shaped Bays

Run-Up of Long Waves in Piecewise Sloping U-Shaped Bays We present an analytical study of the propagation and run-up of long waves in piecewise sloping, U-shaped bays using the cross-sectionally averaged shallow water equations. The nonlinear equations are transformed into a linear equation by utilizing the generalized Carrier–Greenspan transform (Rybkin et al. J Fluid Mech 748:416–432, 2014). The solution of the linear wave propagation is taken as the boundary condition at the toe of the last sloping segment, as in Synolakis (J Fluid Mech 185:523–545, 1987). We then consider a piecewise sloping bathymetry, and as in Kanoglu and Synolakis (J Fluid Mech 374:1–28, 1998), find the linear solution in the near shore region, which can be used as the boundary condition for the nonlinear problem. Our primary results are an analytical run-up law for narrow channels and breaking criteria for both monochromatic waves and solitary waves. The derived analytical solutions reduce to well-known solutions for parabolic bays and plane beaches. Our analytical predictions are verified in narrow bays via a comparison to direct numerical simulation of the 2-D shallow water equations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pure and Applied Geophysics Springer Journals
Loading next page...
 
/lp/springer_journal/run-up-of-long-waves-in-piecewise-sloping-u-shaped-bays-0pQ4nWy5lD
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing
Subject
Earth Sciences; Geophysics/Geodesy
ISSN
0033-4553
eISSN
1420-9136
D.O.I.
10.1007/s00024-017-1476-3
Publisher site
See Article on Publisher Site

Abstract

We present an analytical study of the propagation and run-up of long waves in piecewise sloping, U-shaped bays using the cross-sectionally averaged shallow water equations. The nonlinear equations are transformed into a linear equation by utilizing the generalized Carrier–Greenspan transform (Rybkin et al. J Fluid Mech 748:416–432, 2014). The solution of the linear wave propagation is taken as the boundary condition at the toe of the last sloping segment, as in Synolakis (J Fluid Mech 185:523–545, 1987). We then consider a piecewise sloping bathymetry, and as in Kanoglu and Synolakis (J Fluid Mech 374:1–28, 1998), find the linear solution in the near shore region, which can be used as the boundary condition for the nonlinear problem. Our primary results are an analytical run-up law for narrow channels and breaking criteria for both monochromatic waves and solitary waves. The derived analytical solutions reduce to well-known solutions for parabolic bays and plane beaches. Our analytical predictions are verified in narrow bays via a comparison to direct numerical simulation of the 2-D shallow water equations.

Journal

Pure and Applied GeophysicsSpringer Journals

Published: Feb 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off