Routing Mechanisms Employing Adaptive Weight Functions for Shortest Path Routing in Optical WDM Networks

Routing Mechanisms Employing Adaptive Weight Functions for Shortest Path Routing in Optical WDM... Optical dense wavelength division multiplexed (DWDM) networks are an attractive candidate for the next generation Internet and beyond. In this paper, we consider routing and wavelength assignment in a wide area wavelength routed backbone network that employs circuit-switching. When a session request is received by the network, the routing and wavelength assignment (RWA) task is to establish a lightpath between the source and destination. That is, determine a suitable path and assign a set of wavelengths for the links on this path. We consider a link state protocol approach and use Dijkstra’s shortest path algorithm, suitably modified for DWDM networks, for computing the shortest paths. In [1] we proposed WDM aware weight functions that included factors such as available wavelengths per link, total wavelengths per link. In this paper, we present new weight functions that exploit the strong correlation between blocking probability and number of hops involved in connection setup to increase the performance of the network. We also consider alternate path routing that computes the alternate paths based on WDM aware weight functions. The impact of the weight functions on the blocking probability and delay is studied through discrete event simulation. The system parameters varied include number of network nodes, wavelengths, degree of wavelength conversion, and load. The results show that the weight function that incorporates both hop count and available wavelength provides the best performance in terms of blocking probability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Routing Mechanisms Employing Adaptive Weight Functions for Shortest Path Routing in Optical WDM Networks

Loading next page...
 
/lp/springer_journal/routing-mechanisms-employing-adaptive-weight-functions-for-shortest-NtJehZz8WJ
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1023/A:1011495129926
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial